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We consider voting under metric preferences: both voters and alternatives are associated 
with points in a metric space, and each voter prefers alternatives that are closer to her to 
ones that are further away. In this setting, it is often desirable to select an alternative that 
minimizes the sum of distances to the voters, i.e., the utilitarian social cost, or other similar 
measures of social cost. However, common voting rules operate on voters’ preference 
rankings and therefore may be unable to identify an optimal alternative. A relevant 
measure of the quality of a voting rule is then its distortion, defined as the worst-case 
ratio between the performance of an alternative selected by the rule and that of an 
optimal alternative. Thus, distortion measures how good a voting rule is at approximating 
an alternative with minimum social cost, while using only ordinal preference information. 
The underlying costs can be arbitrary, implicit, and unknown; our only assumption is that 
they form a metric space. The goal of our paper is to quantify the distortion of well-known 
voting rules. We first establish a lower bound on the distortion of any deterministic voting 
rule. We then show that the distortion of positional scoring rules cannot be bounded by a 
constant, and for several popular rules in this family distortion is linear in the number of 
alternatives. On the other hand, for Copeland and similar rules the distortion is bounded by 
a factor of 5. These results hold both for the sum of voters’ cost and the median voter cost. 
For Single Transferable Vote (STV), we obtain an upper bound of O (lnm) with respect to 
the sum of voters’ costs, where m is the number of alternatives, as well as a lower bound 
of �(

√
ln m); thus, STV is a reasonable, though not a perfect rule from this perspective. 

Our results for median voter cost extend to more general objective functions.
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1. Introduction

Voting rules aggregate preferences of multiple voters (also referred to as agents) over a set of available candidates (also 
referred to as alternatives), enabling the voters to choose an option that reflects their collective opinion. Often, voters’ 
preferences are determined by the candidates’ positions on several issues, such as the level of taxation or military spending. 
In this case, each voter and each candidate can be identified with a point in the issue space, and voters tend to prefer 
candidates who are close to them to the ones that are further away. This setting can be formally modeled by embedding 
the input election into a metric space, i.e., a set of points S endowed with a distance measure d: voters’ preferences are 
consistent with this embedding if voter i prefers candidate X to candidate Y whenever d(i, X) < d(i, Y ). The spatial model 
of preferences has received a considerable amount of attention in the social choice literature due to its intuitive appeal 
[14,35,18,19,30,31,40] and has also been considered by AI researchers [17].

When preferences are driven by distances, it is natural to measure the quality of an alternative X by computing the sum 
of distances from X to the voters; in some cases, other objective functions, such as the median distance or the maximum 
distance, may be more appropriate. We may then want to select an alternative that minimizes this objective function. Of 
course, this task is not difficult if we are given access to voters’ and alternatives’ locations. However, typically voters are 
unable to precisely pinpoint their position with respect to each issue, and even the issue space itself may not be known to 
the designer of the voting mechanism (e.g., see the discussion by Boutilier et al. [6]). Thus, it is more realistic to expect the 
voters to simply provide their rankings of alternatives, which are determined by the underlying metric space: each voter 
ranks the alternatives by the distance from her. We then find ourselves in a setting that is well-studied in the social choice 
literature: we are given a collection of ranked ballots (linear orders) and have to select a single alternative based on these 
ballots. We can therefore use one of the many voting rules that have been proposed for this scenario (see, e.g., the survey 
by Zwicker [43]).

Of course, we cannot expect a voting rule that operates on ranked ballots to always identify an alternative that minimizes 
the total distance to the voters. Therefore, one can think of a voting rule as an approximation algorithm that attempts to 
choose the best possible alternative (one that minimizes the social cost, such as, e.g., the total distance to the voters) 
given access to limited information (to ordinal preferences instead of distances). This perspective on voting with ranked 
ballots was proposed by Procaccia and Rosenschein [36] in the context of a more general setting where voters’ utilities for 
alternatives may be arbitrary (i.e., not determined by distances). They introduced the term distortion to refer to the quality 
of approximation provided by a voting rule; we will continue to use this term, although we will formally define it in terms 
of voters’ costs rather than their utilities. Intuitively, the distortion of a voting rule is the worst-case ratio of the social cost 
(such as the sum of distances to voters) of an alternative selected by the voting rule over the cost of an optimal alternative.

Distortion can be viewed as a quantitative measure allowing for a normative comparison of various voting rules; in set-
tings where preferences can be assumed to be driven by distances, low distortion is a highly desirable feature. A comparison 
of voting rules based on their distortion can be seen as an instantiation of the utilitarian approach, which is common in 
welfare economics and algorithmic mechanism design. This approach, which has recently received renewed attention in the 
study of social choice [36,9,6,7], assumes that every agent has (possibly latent or implicit) utility or cost values over the al-
ternatives. As argued by Boutilier et al. [6], although not all social choice problems are amenable to the utilitarian approach 
(especially the ones where it is unnatural to assume that voters’ utilities or costs can be compared), there are many real-life 
settings that fit the utilitarian view. For example, in recommender systems and many similar domains from mechanism de-
sign and e-commerce, the computational agents typically assign real-valued utilities to alternatives rather than have ordinal 
preferences over the set of alternatives. Thus, our work complements the vast literature on normative comparison of voting 
rules, by applying the utilitarian approach to one of the oldest and most fundamental questions in social choice theory.

In this work, we study the quality of outcomes chosen by common voting rules, as measured by their distortion. The 
objective function that we are primarily interested in is the sum of distances to the voters, though we also consider the 
median distance and other similar objective functions. Our results show that, while some commonly used rules have high 
distortion, there are important voting rules for which distortion is bounded by a small constant or grows slowly with the 
number of alternatives.

Our contributions

We bound the worst-case distortion of many well-known voting rules. In other words, we show how closely these rules, 
which only have access to ordinal preferences, approximate an optimal alternative with respect to the metric costs.1 We 
consider two general objective functions to quantify the quality of alternatives, and, for most of the rules we consider, we 
give distortion bounds with respect to both of these functions. The first is the sum objective function, which defines the 
social cost of an alternative as the sum of all agent costs for that alternative. This function is very natural, and is the most 
common measure of social cost. Our other objective function defines the quality of an alternative as the median of agent 
costs for that alternative: focusing on the median agent is quite common as well, as this reduces the impact of outliers, i.e., 
agents with very high or very low costs.

1 Throughout this paper, we assume that agents submit their true ordinal preferences. We leave questions about non-truthful agents as future work; see 
also the work of Feldman et al. [20].



E. Anshelevich et al. / Artificial Intelligence 264 (2018) 27–51 29
Table 1
The worst-case distortion of various voting rules for both the sum and the median objective functions. The numbers in the 
columns labeled ‘Lower bound’ correspond to example instances where the voting rule cannot achieve a better distortion 
with respect to the relevant objective function.

Sum Median

Upper bound Lower bound Upper bound Lower bound

Plurality 2m − 1 2m − 1 ∞ ∞
Borda 2m − 1 2m − 1 ∞ ∞
k-Approval, k > 1 ∞ ∞ ∞ ∞
Veto ∞ ∞ ∞ ∞
Harmonic rule O

(
m√
ln m

)
�

( m
ln m

) ∞ ∞
STV O (lnm) �(

√
lnm) ? �(

√
lnm)

Uncovered set 5 5 5 5
Copeland 5 5 5 5

Scoring rules ∞ 1 + 2
√

lnm − 1 ∞ ∞
Deterministic voting rules ∞ 3 ∞ 5

Most of our results are summarized in Table 1. First, we provide a lower bound on the performance of all deterministic 
voting rules that operate on ranked ballots. We show that no such rule can have worst-case distortion that is better than 
3 (for the sum objective), or better than 5 (for the median objective). With these lower bounds established, we can nev-
ertheless ask: do there exist voting rules that meet this lower bound? Are there rules that obtain the minimum possible 
distortion?

We begin with the bad news: for common positional scoring rules, such as Plurality and Borda, the worst-case distortion 
can be as high as 2m − 1, where m is the number of alternatives. For k-Approval with k > 1 and for Veto the worst-case 
distortion can be unbounded. Moreover, there is no family of positional scoring rules whose worst-case distortion is bounded 
by a constant independent of m: for each value of m, the distortion of every positional scoring rule for m alternatives is at 
least 1 + 2

√
ln m − 1. Interestingly, neither Plurality nor Borda achieve the best possible distortion in the class of positional 

scoring rules: we show that Harmonic rule of Boutilier et al. [6] has asymptotically better distortion than either Plurality or 
Borda. However, the distortion of Harmonic rule is still almost linear.

In contrast, some of the Condorcet-consistent rules have considerably lower distortion. In particular, we prove that the 
distortion of every voting rule that always outputs a subset of the uncovered set [32] does not exceed 5; this upper bound 
holds both for the sum objective and for the median objective, though different techniques are required to prove it for the 
two cases. There are several voting rules that have this property, including the well-known Copeland rule. This means that, 
although these rules know nothing about the metric costs other than the ordinal preferences induced by them, and cannot 
possibly find the true optimal alternative, they nevertheless always select an alternative whose quality is only a factor of 5 
away from optimal! Moreover, our lower bounds show that no deterministic voting rule can do better than Copeland for the 
median objective, and no deterministic voting rule can do much better than Copeland for the sum objective. To complement 
these results, we provide a lower bound on the distortion of the Copeland rule with respect to the sum objective, showing 
that it cannot achieve the best possible distortion. We also consider the Ranked Pairs rule and identify a range of scenarios 
where the distortion of this rule with respect to the sum objective does not exceed 3, thereby matching our lower bound.

Another rule that we consider is Single Transferable Vote (STV), which is one of the very few non-trivial voting rules used 
in real-life elections; for instance, STV is used to elect members of governing bodies (at local or national level) in several 
countries, including Australia, New Zealand, United Kingdom and United States. It turns out that for the sum objective the 
distortion of STV is upper-bounded by O (ln m), i.e., STV performs much better than Plurality or Borda, and, in particular, it 
offers acceptable distortion when the number of alternatives is not too large. On the other hand, we show that the distortion 
of STV is lower-bounded by �(

√
ln m), i.e., STV does not perform quite as well as the Copeland rule.

In addition to the results in Table 1, we also analyze more general objective functions. Specifically, instead of the median 
objective, which sets the quality of an alternative W to be the cost to the median voter, we consider more general percentile
objectives, where the quality of an alternative W is set to be the cost of the voter at the x-th percentile. We show how the 
distortion of various rules changes with x, and establish that Copeland remains the rule with the best possible distortion 
for most values of x.

Related work

The social choice theory offers several strategies to identify a voting rule that is suitable for a particular application. The 
normative approach proceeds by formulating axiomatic properties that a rule should satisfy, and then characterizing the set 
of rules that have these properties or proving that no such rule exists. Early influential papers in this stream of research 
include those of May [29], Arrow [2], Gibbard [24], Satterthwaite [39] and Young [41]; see the survey by Zwicker [43]. 
Another approach is based on maximum likelihood estimation: it is assumed that there is an objectively optimal alternative 
or a ranking of alternatives, but voters make errors of judgement, so their rankings are noisy estimates of the truth. The 
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goal of a voting rule is then to identify the most likely ‘ground truth’ for a given model of noise, and different noise 
models correspond to different voting rules. This approach dates back to Condorcet [11], and can be used to justify a variety 
of voting rules, such as the Kemeny rule [42] or positional scoring rules [12]; see the survey by Elkind and Slinko [15]. 
A related idea is that of distance rationalizability, which identifies each voting rule with a consensus (a class of elections 
with a clear winner) and a distance measure on rankings [8,16,15].

In contrast, in this work we adopt a utilitarian approach to voting. The utilitarian perspective on social choice has its 
advocates in welfare economics [37,33], and has recently received attention from the artificial intelligence and algorithmic 
game theory communities [36,9,6,21,7,10]. While the assumption that voters’ costs can be compared is not universally 
applicable [27], it is nevertheless reasonable in many applications of interest; see the work of Boutilier et al. [6] for further 
discussion. The notion of distortion as a measure of performance of voting rules in utilitarian settings was introduced in an 
influential early paper of Procaccia and Rosenschein [36], and later used by Boutilier et al. [6]. However, in these works it is 
assumed that each voter may assign arbitrary utilities to the alternatives, so, in particular, the utilities are not determined 
by metric considerations. In this more general setting, all deterministic voting rules have unbounded distortion. In contrast, 
in the metric scenario considered in this paper, we obtain meaningful bounds on the distortion of many voting rules.

Voting with spatial preferences has a strong tradition in social choice and political science [14,35,18,19,30,31,40]. While 
some of this work assumes preferences to be one-dimensional, we consider metric spaces of arbitrary dimension. Also, we 
note that our use of distances is very different from that in the distance rationalizability framework: in the latter, distances 
are defined over preference profiles or, sometimes, preference orders, while in our model we consider distances between 
voters and alternatives.

Finally, the concept of distortion is related to many other notions of approximation, as it compares the optimal solution 
with the solution obtained given only limited information. In this regard, it is similar, for example, to the concept of 
competitive ratio in online algorithms, which is a measure of how an algorithm performs with limited information (not 
knowing the future), compared to how an all-knowing algorithm would perform [5,34].

After a preliminary version of our paper was published, several authors have made progress towards understanding 
distortion in voting with metric costs. Specifically, Anshelevich and Postl [1] extend the analysis of distortion to randomized 
voting rules. Feldman et al. [20] study distortion under the additional constraint of strategyproofness; in particular, for 
the case where the underlying metric space is a line they propose a universally truthful randomized mechanism whose 
distortion does not exceed 2. Goel et al. [25] provide bounds on the distortion of randomized tournament rules, and disprove 
a conjecture made in the conference version of our paper (see Section 3.2).

2. Preliminaries

Given a positive integer k, let [k] = {1, . . . , k}.

Social choice with ordinal preferences

Let N = {1, 2, . . . , n} be the set of agents (also called the voters), and let A = {A1, A2, . . . , Am} be the set of alternatives
(also called the candidates). Let S be the set of all total orders on the set of alternatives A. We will typically use i, j to 
refer to agents and W , X, Y , Z to refer to alternatives. Every agent i ∈ N has a preference ranking σi ∈ S . By X �i Y we will 
mean that X is preferred over Y by voter i; we write X �i Y if X �i Y or X = Y . We denote the position of alternative 
X in the preference ranking of voter i by σi(X): if σi(X) = 1 then X is i’s most preferred alternative. We call the vector 
σ = (σ1, . . . , σn) ∈ Sn a preference profile. The following notation will be used throughout our proofs:

XY = {i ∈ N : X �i Y }
XY Z = {i ∈ N : X �i Y �i Z}

We say that alternative X Pareto-dominates alternative Y in σ if |XY | = n. We say that X defeats Y if |XY | > n
2 ; X weakly 

defeats Y if |XY | ≥ n
2 . An alternative X is a Condorcet winner (respectively, a weak Condorcet winner) if it defeats (respectively, 

weakly defeats) all other alternatives. The (weak) majority graph of σ is a directed graph with node set A where there is an 
arc from X to Y if and only if X (weakly) defeats Y .

Once we are given a preference profile, we want to aggregate the preferences of the agents in order to select a subset of 
winning alternatives (usually, we would like to identify a single winner, but we allow for ties). A voting rule f : Sn → A is 
a mapping that, given a preference profile over A, outputs a non-empty subset W of A. The alternatives in W are called 
the winners under f . In this paper, we consider the following well-known voting rules.

Positional scoring rules. Fix a set of alternatives A, |A| = m. A positional scoring rule for A is determined by a scoring 
vector 
s = (s1, s2, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm , s1 > sm , si ∈ Q for i ∈ [m]. If an agent ranks an alternative in 
position �, then this alternative receives s� points from that agent. The total score s(X, σ) of an alternative X
with respect to a preference profile σ is the total number of points that X receives from all agents. The positional 
scoring rule based on vector 
s is f
s(σ ) = arg maxX∈A s(X, σ); that is, it selects the alternatives with the highest 
total score. Many well-known voting rules can be thought of as positional scoring rules, for example:
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• Plurality: 
s = (1, 0, . . . , 0),
• Veto: 
s = (1, 1, . . . , 1, 0),
• Borda: 
s = (m − 1, m − 2, . . . , 1, 0),
• Harmonic rule: 
s = (1, 1/2, 1/3, . . . , 1/m),
• k-Approval (1 ≤ k < m): 
s = (1,1, . . . ,1︸ ︷︷ ︸

k

, 0, . . . , 0).

Copeland. The Copeland score of an alternative X is the number of alternatives that X defeats. The Copeland rule outputs 
all alternatives with the maximum Copeland score.

Ranked Pairs. Given a profile σ over a set of alternatives A, construct a graph G with node set A in the following manner. 
Sort the pairs (X, Y ) ∈ A × A in non-increasing order of weights |XY | and iterate over them. For each directed 
edge (X, Y ) in the sorted list, add it to G if it will not create a directed cycle, and do nothing otherwise. The 
winners are the source nodes of the resulting directed acyclic graph.

Single Transferable Vote (STV). STV is an iterative rule that works as follows. In each round one of the alternatives with the 
lowest Plurality score (the one that is ranked first by the fewest voters) is removed from the set of alternatives and 
from the rankings of the voters; the Plurality scores are then recalculated. After m − 1 rounds, only one alternative 
survives; this alternative is declared to be a winner.

Note that we described Ranked Pairs and STV as non-deterministic voting rules: there are multiple ways to or-
der the pairs (X, Y ) in non-increasing order of weights, and in any given round, there may be multiple alternatives 
with the lowest Plurality score. There are several ways to make them deterministic; in this work, we will consider 
the so-called parallel-universe model [13]. In this model, an alternative is said to be a Ranked Pairs winner if it is 
a source node in the resulting acyclic graph for some way of ordering the node pairs in non-increasing order of 
weights; similarly, an alternative is an STV winner if it survives after m − 1 rounds for some sequence of choices 
at each elimination step.

The execution of STV is illustrated by the following example.

Example 1. Consider the following preference profile:

1 : A1 �1 A2 �1 A3 �1 A4, 2 : A1 �2 A4 �2 A3 �2 A2,

3 : A2 �3 A4 �3 A1 �3 A3, 4 : A2 �4 A4 �4 A3 �4 A1,

5 : A3 �5 A2 �5 A4 �5 A1, 6 : A3 �6 A2 �6 A1 �6 A4,

7 : A1 �7 A2 �7 A4 �7 A3, 8 : A4 �8 A1 �8 A2 �8 A3.

In the first round A4 is eliminated. In the second round, after A4 is removed, the Plurality scores of the alternatives 
A1, A2, and A3, are equal to 4, 2, and 2, respectively. If we choose to eliminate A3, then in the next round the 
scores of A1 and A2 are equal to 4, so either of them can be eliminated. Alternatively, we can eliminate A2 in the 
second round; in the next round, the score of A1 is 5, while the score of A3 is 3, so A3 is eliminated. Thus, the 
set of STV winners is {A1, A2}.

Cardinal metric costs

In our work we study settings where the ordinal preferences σ are induced by underlying cardinal agent costs. Formally, 
we assume that there exists a pseudo-metric d : (N ∪ A)2 → R≥0 on the set of agents and alternatives (we only require d
to be a pseudo-metric rather than a metric, since we allow agents to be at distance 0 from each other). Here d(i, X) is the 
cost incurred by agent i when alternative X is selected as the winner; these costs can be arbitrary, but are assumed to obey 
the triangle inequality. The metric costs d naturally give rise to a preference profile: we say that a profile σ over a set of 
alternatives A is consistent with d if for all i ∈ N and for all X, Y ∈A it holds that d(i, X) < d(i, Y ) implies X �i Y . In other 
words, if the cost of X is less than the cost of Y for an agent, then the agent should prefer X over Y . Let p(d) denote the 
set of preference profiles consistent with d (p(d) need not be a singleton, as agent costs may have ties); consequently, given 
a profile σ , we denote by p−1(σ ) the set of all pseudo-metrics d such that σ ∈ p(d). All of our results continue to hold if 
we restrict ourselves to the set of pseudo-metrics d such that d(X, Y ) > 0 for all distinct X, Y ∈A.

In general, by assuming that the preference rankings of the agents are generated in a specific way, we may rule out some 
preference profiles. For instance, if we further restrict our model by assuming that agents and alternatives are associated 
with points on the real line, the metric is the usual Euclidean metric, and no agent is equidistant from two alternatives, the 
resulting profile is guaranteed to be single-peaked and single-crossing and hence its majority graph has no directed cycles 
[3,23,38]. However, having arbitrary metric costs in our model does not restrict the set of possible profiles σ in any way: 
metrics are general enough that any preference profile in Sn can be induced, even if we require that all pairwise distances 
between alternatives are strictly positive; in fact, Bogomolnaia and Laslier [4] establish that this is the case even if our 
metric space is Rt with the usual Euclidean metric, for t ≥ min{n, m − 1}.
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Social cost and distortion

We measure the quality of each alternative using the costs incurred by all agents when this alternative is chosen. We 
use two different notions of social cost. First, we study the sum objective function, defined as SC∑(X, d) = ∑

i∈N d(i, X); 
this is the most common notion of social cost. We also study the median objective function, SCmed(X, d): this function sorts 
the agent costs d(i, X) in non-decreasing order, and outputs the 

⌊ n
2 + 1

⌋
-th cost. As described in the introduction, we can 

view voting rules in our setting as attempting to find an optimal alternative (one that minimizes the social cost), despite 
only having access to the ordinal preference profile σ , instead of the full underlying costs d. The following proposition 
establishes that this is impossible to do: we can only eliminate an alternative from consideration of being optimal if it is 
Pareto-dominated by another alternative.

Proposition 2. Given a preference profile σ , let A′ denote the set of alternatives that are not Pareto-dominated in σ . Then for every 
alternative W ∈ A′ there exists a metric d ∈ p−1(σ ) such that W is the unique optimal alternative with respect to the social cost 
function SC∑(·, d).

Proof. For every alternative W ∈ A′ we will define a metric d ∈ p−1(σ ) such that W is optimal for σ with respect to d. 
For each agent i, set d(i, X) = 1 for all X such that X �i W and d(i, X) = 2 for all X such that W �i X . For every pair of 
distinct alternatives X, Y , set d(X, Y ) = 2. For every pair of distinct agents i, j, set d(i, j) = 2. It is easy to verify that d is a 
metric; in particular, the triangle inequality holds since d takes values in {0, 1, 2}.

Consider any alternative X �= W . We observe that

SC∑(X,d) − SC∑(W ,d) =
∑
i∈N

d(i, X) −
∑
i∈N

d(i, W )

=
∑

i∈X W

(d(i, X) − d(i, W )) +
∑

i∈W X

(d(i, X) − d(i, W ))

= 0 + 1 · |W X | ≥ 1.

Thus, we conclude that W is the unique optimal alternative for σ with respect to d. �
A simple corollary of Proposition 2 is that if there is no alternative ranked first by all agents then we cannot determine 

an optimal alternative with respect to the sum objective based on ordinal preferences only: every alternative that is ranked 
first by at least one agent may turn out to be the unique optimal alternative.

Since all voting rules defined earlier in this section operate on preference profiles, they cannot be expected to find an 
optimal alternative. Nevertheless, we would like to understand how good are the alternatives selected by these voting rules 
in terms of their social cost. We focus on the worst-case performance. To formalize this question, we use the notion of 
distortion [36,6].

Definition 3. The distortion of a voting rule f on a profile σ with respect to a social cost function SC ∈ {SC∑, SCmed} is given 
by

distSC( f ,σ ) = sup
d∈p−1(σ )

maxW ∈ f (σ ) SC(W ,d)

minX∈A SC(X,d)
.

To deal with the possibility that minX∈A SC(X, d) may be equal to 0 for some metric d, we use the following convention: if 
for some d ∈ p−1(σ ) we have SC(X, d) = 0 for some X ∈A, we set

maxW ∈ f (σ ) SC(W ,d)

minX∈A SC(X,d)
=

{
1 if SC(W ,d) = 0 for all W ∈ f (σ )

+∞ otherwise

For readability, we write dist∑ and distmed in place of distSC∑ and distSCmed , respectively.

In other words, the distortion of a voting rule f on a profile σ is the worst-case ratio between the social cost of an 
alternative in f (σ ) and the social cost of a true optimal alternative. The worst case is taken over all possible outputs of 
f (σ ) and over all metrics d that may have induced σ , since the voting rule does not and cannot know which of these 
metrics is the true one.

3. Distortion of total agent cost

In this section, we study the sum objective function, which measures the quality of an alternative as the total agent 
cost when this alternative is chosen. We prove tight upper bounds for distortion of several well-known voting rules. The 
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main result of this section is that the Copeland rule exhibits a distortion of at most 5; this guarantee is independent of the 
number of agents or alternatives, and the underlying metric space is allowed to be completely arbitrary (and unknown). 
Further, we show that scoring rules do not behave well with respect to distortion; in particular, the distortion of Plurality 
and Borda scales linearly with the number of alternatives. This conclusion is important because scoring rules are used 
in a variety of applications due to their simplicity and intuitive appeal. Finally, we establish that the distortion of STV 
is upper-bounded by O (ln m) and lower-bounded by �(

√
ln m). Thus, while STV does not perform quite as well as the 

Copeland rule, its distortion is much better than that of Plurality or Borda. This result is particularly important because STV 
is a rule that is often used in practice.

Note that it is possible to directly compute an alternative that minimizes the worst-case distortion, by using a linear 
program (the construction is similar to the one in the proof of Theorem 3.4 in the work of Boutilier et al. [6]). However, there 
are two reasons why we believe that our results are important, and why we focus on rules such as Plurality and Copeland. 
First, one of the main questions that we are interested in is how well a voting rule can perform without knowledge of the 
underlying metric, as compared to the “true” optimum, which could only be computed by an omniscient rule. To prove an 
upper bound on the distortion of the “LP rule” directly seems difficult; instead it makes sense to focus on bounding the 
performance of simpler rules, and then use the fact that the LP rule performs even better. In fact, one way to interpret our 
results is: “The worst-case distortion of the LP rule (and thus of the best outcome that can be achieved without knowing 
the metric) is at least 3 and at most 5; if the circumference of the weak majority graph is small, then it is exactly 3.” 
Second, and perhaps more importantly, although the worst-case distortion of the LP rule is at least as good as that on any 
other deterministic voting rule, this rule is computationally intense (although still computable in polynomial time) and it 
may be difficult to convince people to use it, as compared to such “natural” and well-established voting rules as Plurality, 
Borda, STV, and Copeland. Furthermore, nothing is known about the axiomatic properties that the LP rule satisfies, while the 
voting rules we consider are quite well understood. Thus, our work focuses on distortion of very computationally efficient, 
simple-to-describe, and commonly used voting rules which satisfy many desirable axioms.

Before proceeding with showing upper bounds on the distortion of specific voting rules, we ask the question: how 
well can any voting rule perform? The following simple result tells us that we cannot hope to approximate the optimal 
alternative within a factor better than 3.

Theorem 4. No (deterministic) voting rule has worst-case distortion less than 3 for the sum objective.

Proof. Suppose there are only two alternatives X and W . Half of the agents prefer X over W , and the other half prefer 
W over X . Suppose without loss of generality that the given voting rule picks W as one of the winners. Consider then 
the following metric. All n/2 agents who prefer X to W are located exactly at X , i.e., d(i, X) = 0 and d(i, W ) = 2. All n/2
agents who prefer W are approximately halfway between X and W , i.e., d(i, X) = 1 + ε and d(i, W ) = 1 − ε for some small 
ε > 0. Then SC∑(X, d) = ∑

i∈N d(i, X) = (1 + ε) · n
2 and SC∑(W , d) = ∑

i∈N d(i, W ) = 2 · n
2 + (1 − ε) · n

2 . Thus, the distortion 
approaches 3 as ε → 0. �

For two alternatives, this bound is tight: it can be shown that for |A| = 2 the voting rule that outputs all alternatives 
ranked first by a weak majority of agents has a distortion of 3 (see Corollary 7).

Let us now prove two lemmas that will be useful in our further analysis. Our first lemma provides bounds on the costs 
of agents incurred by alternatives; these bounds will be used repeatedly throughout all of our proofs. Specifically, we prove 
two lower bounds on the cost of an alternative, which will be used to lower-bound the cost of an optimal alternative. 
We also establish an upper bound, which will be used to bound the cost of a winning alternative W for agents who prefer 
an optimal alternative X over W ; for agent i who prefers W to X , we can simply use d(i, W ) ≤ d(i, X). Since we assume 
that agent costs are metric, all of these bounds crucially rely on the triangle inequality.

Lemma 5. Let W , X, Y , Z be alternatives. Then the following bounds hold:

∀i ∈ W X, d(i, X) ≥ 1

2
· d(X, W ) (1)

∀i ∈ W Y , d(i, X) ≥ 1

2
· (d(X, W ) − d(X, Y )) (2)

∀i, d(i, W ) ≤ d(i, X) + min
W �i Z

d(X, Z) (3)

Proof.

(1) Fix an agent i ∈ W X . Since W �i X , we have d(i, W ) ≤ d(i, X). Combining this with the triangle inequality, we have 
d(X, W ) ≤ d(i, X) + d(i, W ) ≤ 2 · d(i, X).

(2) Fix an agent i ∈ W Y . By the triangle inequality we have d(i, X) ≥ d(X, W ) − d(i, W ). Since i prefers W over Y , we 
have d(i, W ) ≤ d(i, Y ) and hence d(i, X) ≥ d(X, W ) − d(i, Y ). By adding this inequality to d(i, X) ≥ d(i, Y ) − d(X, Y ), we 
obtain the desired result.
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(3) Fix an agent i and alternatives W and X . Let Z be some alternative such that W �i Z (note that there always exists 
such an alternative since W �i W ). By the triangle inequality, d(i, W ) ≤ d(i, Z) ≤ d(i, X) + d(X, Z). Since this holds for 
every Z with W �i Z , we conclude that (3) holds. �

Our next lemma parameterizes the distortion by the number of agents who prefer a (winning) alternative W over an 
(optimal) alternative X .

Lemma 6. For every preference profile σ , every pseudo-metric d ∈ p−1(σ ), and every pair of alternatives W , X we have

SC∑(W ,d)

SC∑(X,d)
≤ 1 + 2(n − |W X |)

|W X | = 2n

|W X | − 1 .

Proof. First, we want to upper-bound the agent cost incurred by alternative W . We do this by dividing the agents into 
two groups, W X and X W . For an agent i ∈ W X , we know that d(i, W ) ≤ d(i, X). For an agent i ∈ X W we use the triangle 
inequality to obtain d(i, W ) ≤ d(i, X) + d(X, W ). We obtain

SC∑(W ,d)

SC∑(X,d)
=

∑
i∈N d(i, W )∑
i∈N d(i, X)

=
∑

i∈W X
d(i, W ) + ∑

i∈X W
d(i, W )∑

i∈N
d(i, X)

≤
∑

i∈W X
d(i, X) + ∑

i∈X W
(d(i, X) + d(X, W ))∑

i∈N
d(i, X)

= 1 +
∑

i∈X W d(X, W )∑
i∈N d(i, X)

= 1 + |X W | · d(X, W )∑
i∈N d(i, X)

= 1 + (n − |W X |) · d(X, W )∑
i∈N d(i, X)

. (4)

It remains to lower-bound the cost of X . It follows from Lemma 5 that d(i, X) ≥ 1
2 · d(X, W ) for each agent i with W �i X . 

Thus we have 
∑

i∈N d(i, X) ≥ 1
2 |W X | · d(X, W ). Combining this inequality with equation (4) gives us the desired result. �

An important corollary of Lemma 6 is that by selecting weak Condorcet winners we can ensure low distortion with 
respect to the sum objective; in particular, this means that for m = 2 the distortion of the weak majority rule (the rule that 
outputs all alternatives ranked first by at least half of the voters) is at most 3.

Corollary 7. Consider a profile σ that admits a weak Condorcet winner W , and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal 
alternative for σ with respect to d. Then SC∑(W , d) ≤ 3 · SC∑(X, d).

Proof. Let n be the number of agents. We have |W X | ≥ n/2 and hence SC∑(W ,d)

SC∑(X,d)
≤ 2n

|W X | − 1 = 3. �
We are now ready to show upper bounds on maximum distortion for several important voting rules.

3.1. Distortion of scoring rules

We start our discussion by considering positional scoring rules. Unfortunately, it turns out that the distortion of such 
rules cannot be bounded by a constant: for each constant c there is a value of m0 such that the worst-case distortion of 
all positional scoring rules for m0 or more alternatives is at least c. Moreover, for many well-known families of positional 
scoring rules the distortion grows linearly with the number of alternatives, or cannot be bounded at all.

Example 8. Consider a positional scoring rule given by a score vector 
s = (s1, . . . , sm) with s1 = s2. Suppose that for j =
1, . . . , m alternative Ai is located at the point x = i on the real axis R, all agents are located at x = 1, and the distance is 
the usual Euclidean distance in R. Then all n agents rank the alternatives as A1 � A2 � · · · � Am , and alternatives A1 and 
A2 are among the election winners, as they both achieve the highest possible score ns1 = ns2. However, the total distance 
from agents to A1 is 0, whereas the total distance from agents to A2 is n, so the distortion of our rule is +∞.

Example 8 establishes that the distortion of Veto and k-Approval with k > 1 is unbounded. We will now prove a lower 
bound on the distortion of positional scoring rules with s1 > s2.

Theorem 9. Let f
s be a positional scoring rule given by a score vector 
s = (s1, . . . , sm) with s1 > s2 . Then there is a profile σ over 
m alternatives such that dist∑( f
s, σ) ≥ 1 + 2

√
ln m − 1. Moreover, if 
s = (m − 1, . . . , 1, 0) (i.e., if f
s is the Borda rule) or if 
s =
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(1, 0, . . . , 0) (i.e., if f
s is Plurality) there is a profile σ over m alternatives such that dist∑( f
s, σ) ≥ 2m − 1. Furthermore, if 
s =
(1, 1/2, . . . , 1/m) (i.e., if f
s is the Harmonic rule) there is a profile σ over m alternatives such that dist∑( f
s, σ) = � 

( m
ln m

)
.

Proof. Fix the number of alternatives m and the scoring vector 
s = (s1, . . . , sm) with s1 > s2. As s1 > s2 implies s1 �= sm , it 
can be assumed without loss of generality that s1 = 1, sm = 0. For every z = 1, . . . , m, let

F z = s1 + · · · + sz, Lz = sm−z+1 + · · · + sm,

and set

f z = F z

z
, �z = Lz

z
.

We will construct a profile σ over m alternatives where all alternatives and all agents are associated with points in R; the 
description of the instance depends on the parameters z, n1, and n2 whose values will be chosen later. In our construction, 
we place several alternatives in the same position; towards the end of the proof, we will show how to fix our construction 
so that d(X, Y ) > 0 whenever X and Y are distinct alternatives.

There are z alternatives, 0 < z < m, at x = 1; we denote these alternatives by B1, . . . , Bz and write B = {B1, . . . , Bz}. The 
remaining m − z alternatives are at x = −1; we denote them by C1, . . . , Cm−z , and write C = {C1, . . . , Cm−z}. There are z · n1
agents at x = 0 and z · n2 agents at x = 1.

We assume that all agents at x = 0 prefer alternatives in C to alternatives in B, all agents rank the alternatives in C in 
the same way, and in aggregate the agents are indifferent among alternatives in B. Specifically, for each i = 1, . . . , z there 
are n1 agents at x = 0 who rank the alternatives as

C1 � · · · � Cm−z � Bi � · · · � Bz � B1 � · · · � Bi−1

and n2 agents at x = 1 who rank the alternatives as

Bi � · · · � Bz � B1 � · · · � Bi−1 � C1 � · · · � Cm−z.

For this instance, the sum of distances from agents to any alternative in B is zn1, while the sum of distances from agents 
to any alternative in C is zn1 + 2zn2, so as long as z, n1 and n2 are all positive, it is optimal to select an arbitrary alternative 
in B. However, the score of C1 is zn1 + zn2sz+1, whereas the score of any alternative in B is

n1(sm−z+1 + . . . + sm) + n2(s1 + . . . + sz) = n1Lz + n2 F z.

Thus, if

zn1 + zn2sz+1 > n1Lz + n2 F z, (5)

our rule outputs C1 and we have

dist∑( f
s,σ ) ≥ zn1 + 2zn2

zn1
= 1 + 2

n2

n1
.

We will now show that we can choose z ∈ {1, . . . , m − 1} and positive integers n2, n1 so that we get a lower bound on n2
n1

and condition (5) is satisfied. It will be convenient to rewrite condition (5) as follows:

z + z · sz+1 · n2

n1
> F z · n2

n1
+ Lz

or, equivalently,

n2

n1
<

z − Lz

F z − z · sz+1
;

note that the denominator of the fraction in the right-hand side is not zero since we assume s1 = 1, s2 < 1. Let

R(z) = z − Lz

F z − z · sz+1
,

and observe that the distortion of f
s can be lower-bounded by 1 + 2 maxz∈{1,...,m−1} R(z). Indeed, for a fixed value of 
z ∈ {1, . . . , m − 1} the quantity R(z) is a rational fraction2; let us denote this fraction by α

β
. We can set n2 = α, n1 = β

to obtain a profile on which the distortion of our rule is at least 1 + 2R(z). It remains to show how to choose z so as to 
maximize R(z) for a given score vector 
s.

2 Note that we assume that the entries of the scoring vector are rational numbers.
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For the Borda rule, after normalizing the score vector, we have 
s = (1, m−2
m−1 , m−3

m−1 , . . . , 0), so we take z = 1 and obtain

R(1) = 1 − L1

F1 − s2
= 1

1 − m−2
m−1

= m − 1,

which gives the lower bound of 2m − 1 on the distortion of the Borda rule.
For Plurality, we take z = m − 1 and get

R(m − 1) = m − 1 − Lm−1

Fm−1 − sm
= m − 1 − 0

1 − 0
= m − 1,

which proves the lower bound of 2m − 1 on the distortion of Plurality.
For the Harmonic rule we also take z = m − 1 and obtain

R(m − 1) = m − 1 − Lm−1

Fm−1 − sm
≥ m − 1 − ln(m − 1) − 1

lnm
= �

( m

ln m

)
.

To show a lower bound for the general case, it remains to argue that for every score vector 
s we can choose z ∈
{1, . . . , m − 1} so that R(z) ≥ √

ln m − 1. For readability, we prove this fact in a separate lemma.

Lemma 10. There exists a z ∈ {1, . . . , m − 1} such that R(z) ≥ √
ln m − 1.

Proof. Let λ = 1/
√

ln m − 1. We will consider two cases.

1. s2 > 1 − λ. In this case we can set z = 1. Indeed, for z = 1 we have z − Lz = 1, F z − z · sz+1 = s1 − s2 < λ, so R(1) ≥ 1/λ, 
which is what we need to prove.

2. s2 ≤ 1 − λ. Note that in this case we have z − Lz ≥ zλ for z = 1, . . . , m − 1.
We will argue that there exists a z ∈ {1, . . . , m − 1} such that f z − sz+1 ≤ λ2; we then obtain

R(z) ≥ zλ

zλ2
= 1

λ
.

Indeed, suppose that for each z ∈ {1, . . . , m − 1} we have f z − sz+1 > λ2. We have

(z + 1) · f z+1 = F z+1 = F z + sz+1 = z · f z + sz+1 < (z + 1) f z − λ2;
dividing both sides by z + 1 gives f z+1 < f z − λ2

z+1 . Inductively, this implies

fm < 1 − λ2
(

1

2
+ · · · + 1

m

)
.

But 1
2 + · · · + 1

m > ln m − 1, and hence

λ2
(

1

2
+ · · · + 1

m

)
> 1,

whereas fm = 1
m (s1 + · · · + sm) is necessarily positive, a contradiction. Thus, f z − sz+1 ≤ λ2 for some z ∈ {1, . . . , m − 1}, 

and the proof is complete. �
As argued above, Lemma 10 immediately implies the desired lower bound.
We can modify our construction so as to induce the same profile σ using a distance d such that d(X, Y ) > 0 for all 

distinct alternatives X, Y and there is no dependence on tie-breaking. Briefly, we can move from R to Rm+1 endowed 
with the �1 distance. We pick a small ε > 0 and for each i = 1, . . . , m − z we place Ci at (−1 − iε, 0, . . . ). Further, for 
each i = 1, . . . , z we place Bi at (1, 0, . . . , 0, ε, 0, . . . , 0), where ε appears in position i + 1. There are n1z agents whose 
location is of the form (0, δ1, . . . , δm) and n2z agents whose location is of the form (1, δ1, . . . , δm), where 0 < δi ≤ ε for 
each i = 1, . . . , m; for each agent the values of δi are chosen so as to induce the desired preference order. For ε → 0, all 
calculations in the proof of Theorem 9 remain valid. �

We will now show upper bounds on the distortion of Plurality and Borda, which match the lower bounds for these rules 
given by Theorem 9, and an upper bound on the distortion of the Harmonic rule, which almost matches the respective lower 
bound. Thus, not all positional scoring rules are equally bad from the perspective of distortion: in particular, the Harmonic 
rule always provides sublinear distortion.
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Theorem 11. For every profile σ over m alternatives the distortion of Plurality and the Borda rule on σ with respect to the sum objective 
is at most 2m − 1.

Proof. Fix an n-voter profile σ over m alternatives and a pseudo-metric d ∈ p−1(σ ), and let X be an optimal alternative 
with respect to d. Let W denote a winning alternative. We will argue that both for Plurality and for the Borda rule we have 
|W X | ≥ n

m ; we will then invoke Lemma 6.
For Plurality, this claim is immediate, as at least n

m agents rank W first. Now, consider the Borda rule. For each agent 
i ∈ N let δi = σi(X) − σi(W ); as W is a Borda winner, we have 

∑
i∈N δi ≥ 0. For each i ∈ X W we have δi ≤ −1 and for each 

i ∈ W X we have δi ≤ m − 1. Now, if |W X | < n
m , we have |X W | > n − n

m and hence

∑
i∈N

δi ≤ −1|X W | + (m − 1)|W X | < −n(m − 1)

m
+ n(m − 1)

m
= 0,

a contradiction. Thus, |W X | ≥ n/m for the Borda rule as well. Combining these bounds on |W X | with Lemma 6 gives us the 
desired distortion bounds. �
Theorem 12. The distortion of the Harmonic rule with respect to the sum objective is asymptotically bounded by O  

(
m√
ln m

)
.

Proof. It will be convenient to extend the definition of the harmonic weight vector to non-integer “indices” and set st = 1/t
for all t > 0. As in the proof of Theorem 9, given a positive integer z, we write F z = 1 + 1

2 + . . . + 1
z .

Fix a preference profile σ over m alternatives and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal alternative for σ
with respect to d, and let W be a winner under the Harmonic rule. Set δ = d(W , X). Let

U =
{

i ∈ N : d(i, X) <
δ

6

}
, u = |U |.

We have∑
i∈N d(i, W )∑
i∈N d(i, X)

≤
∑

i∈N (d(i, X) + d(X, W ))∑
i∈N d(i, X)

= 1 + nδ∑
i∈N d(i, X)

≤ 1 + nδ∑
i∈N\U d(i, X)

≤ 1 + nδ

(n − u)δ/6
= 1 + 6n

n − u
.

It remains to argue that n − u = n · � 
(√

ln m
m

)
. Let

G =
{

Y ∈ A : d(Y , X) <
δ

3

}
, z = |G|.

For each i ∈ U , let s(i) be the score that X receives from i; we have

s(i) = sσi(X) = 1

σi(X)
.

Also, let

ζ(i) = Fσi(X) = s1 + . . . + sσi(X).

Fix a voter i ∈ U . For each Y ∈ G we have

d(i, Y ) ≤ d(i, X) + d(X, Y ) <
δ

6
+ δ

3
= δ

2
,

d(i, W ) ≥ d(X, W ) − d(i, X) > δ − δ

6
= 5δ

6
,

so i prefers each alternative from G over W . On the other hand, for each Z ∈A \ G we have

d(i, Z) ≥ d(Z , X) − d(i, X) >
δ

3
− δ

6
= δ

6
> d(i, X),

so i prefers X to each alternative from A \ G . Consequently, i’s preference order is of the following form:

i : Ai1 � . . . � Ai�︸ ︷︷ ︸
subset of G \ {X}

� X � . . . � W � . . .
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Thus, the total score of W is at most

usz+1 + (n − u),

whereas the total score of X is at least∑
i∈U

s(i).

Moreover, the total score that the alternatives in G get from a voter i ∈ U is at least ζ(i) (observe that X ∈ G), so by the 
pigeonhole principle the total score of some alternative in G is at least

1

z

∑
i∈U

ζ(i).

Since W is a winner under the Harmonic rule, we have

u · sz+1 + (n − u) ≥
∑
i∈U

s(i), and (6)

u · sz+1 + (n − u) ≥ 1

z

∑
i∈U

ζ(i). (7)

Let ξ = 1
u

∑
i∈U σi(X). By the inequality between the harmonic mean and the arithmetic mean, we have

u∑
i∈U s(i)

= u∑
i∈U

1
σi(X)

≤
∑

i∈U σi(X)

u
= ξ,

so 
∑

i∈U s(i) ≥ u
ξ

= u · sξ , and inequality (6) implies

u · sz+1 + (n − u) ≥ u · sξ . (8)

As we have σi(X) ≤ z for each i ∈ U and Fx
x is a decreasing function of x, we obtain Fσi (X) ≥ σi(X) F z

z for each i ∈ U and 
hence ∑

i∈U ζ(i)

u · ξ =
∑

i∈U ζ(i)∑
i∈U σi(X)

=
∑

i∈U Fσi(X)∑
i∈U σi(X)

≥ F z

z
.

Therefore, inequality (7) implies

u · sz+1 + (n − u) ≥ uξ · F z

z2
. (9)

Now, if ξ ≤ z(ln z)−1/2 it holds that sξ ≥ (ln z)1/2/z, whereas if ξ > z(ln z)−1/2, we have F z > ln z, and hence ξ · F z/z2 >

(ln z)1/2/z. Together with inequalities (8) and (9), this implies

u

z + 1
+ (n − u) ≥ u

√
ln z

z
,

or, equivalently,

n ≥ u

(
1 +

√
ln z

z
− 1

z + 1

)
.

As z ≤ m, it follows that

u ≤ n

1 +
√

ln m
m − 1

m+1

,

and, consequently,

n − u ≥ n ·
√

ln m
m − 1

m+1

1 +
√

ln m
m − 1

m+1

= n · �
(√

ln m

m

)
,

which is what we had to prove. �
Altogether, the results of this section indicate that well-known positional scoring rules have high worst-case distortion; 

while the Harmonic rule performs slightly better, its distortion is still very substantial. Informally, this is because an optimal 
alternative can be preferred over the eventual winner by a relatively large fraction of the agents, and yet still lose. In what 
follows, we will see several voting rules that escape this predicament, resulting in significantly better performance.
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3.2. Distortion of the Copeland rule and Ranked Pairs

In this section we show that for several simple voting rules, including the Copeland rule, the distortion with respect to 
the sum objective never exceeds 5. We first state and prove some preliminary observations.

Lemma 13. Consider a vector 
v ∈ Rm with v1 ≥ v2 ≥ · · · ≥ vm ≥ 0 and a pair of vectors α, β ∈ Rm. If for all k ∈ [m] it holds that ∑k
i=1 αi ≥ ∑k

i=1 βi , then 
∑m

i=1 αi vi ≥ ∑m
i=1 βi vi .

Proof. For each i ∈ [m], let γi = αi − βi . We use Abel’s transform: given two sequences a1, . . . , am , b1, . . . , bm it holds that

m∑
i=1

aibi = am

m∑
i=1

bi −
m−1∑
i=1

⎛
⎝ i∑

j=1

b j

⎞
⎠ (ai+1 − ai).

Substituting bi = γi , ai = vi , we obtain

m∑
i=1

αi vi −
m∑

i=1

βi vi =
m∑

i=1

γi vi = vm

m∑
i=1

γi −
m−1∑
i=1

⎛
⎝ i∑

j=1

γ j

⎞
⎠ · (vi+1 − vi)

= vm

m∑
i=1

γi +
m−1∑
i=1

⎛
⎝ i∑

j=1

γ j

⎞
⎠ · (vi − vi+1). (10)

Now, by the conditions of the lemma we have 
∑i

j=1 γ j ≥ 0 for all i ∈ [m] and vi − vi+1 ≥ 0 for all i ∈ [m − 1], so all 
summands in (10) are non-negative. Hence, the lemma holds. �

The next lemma enables us to obtain a lower bound on the cost of a given alternative; we will use it in situations where 
X is an optimal alternative and W is a winning alternative.

Lemma 14. Consider a profile σ , a pseudo-metric d ∈ p−1(σ ), and a pair of alternatives X, W . If∑
i∈N

d(i, X) ≥ 1

γ

∑
i∈X W

min
W �i Z

d(X, Z) (11)

for some γ ≤ 1, then SC∑(W , d) ≤ (1 + γ ) SC∑(X, d).

Proof. We use inequality (3) together with the fact that d(i, W ) ≤ d(i, X) for i ∈ W X to upper-bound the cost of the 
alternative W :

SC∑(W ,d)

SC∑(X,d)
=

∑
i∈N d(i, W )∑
i∈N d(i, X)

=
∑

i∈W X d(i, W ) + ∑
i∈X W d(i, W )∑

i∈N d(i, X)

≤
∑

i∈N d(i, X) + ∑
i∈X W minW �i Z d(X, Z)∑

i∈N d(i, X)
= 1 +

∑
i∈X W minW �i Z d(X, Z)∑

i∈N d(i, X)
.

Together with assumption (11) this gives the desired result. �
Consider a profile σ over a set of alternatives A. An alternative W ∈ A is said to belong to the uncovered set of σ if for 

every Z ∈ A it holds that W weakly defeats Z or there is an alternative Y such that W weakly defeats Y and Y weakly 
defeats Z ; we denote the uncovered set of a profile σ by UC(σ ) [32]. For each profile its uncovered set is non-empty; 
moreover, the Copeland rule always outputs a subset of the uncovered set. To see this, consider a Copeland winner W , and 
suppose that W defeats k alternatives Y1, . . . , Yk , so that its Copeland score is k. If there is an alternative X such that none 
of the alternatives in {W , Y1, . . . , Yk} weakly defeats X , then X defeats all these alternatives and hence its Copeland score 
is higher than that of W , a contradiction. There are several other tournament solution concepts that always output a subset 
of the uncovered set, such as the Banks set, the bipartisan set, the minimal covering set or the tournament equilibrium 
set [28].

We will now show that the social cost of every alternative in the uncovered set is within a factor of 5 from optimal.

Theorem 15. Consider a profile σ and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal alternative for σ with respect to d. Then for 
every W ∈ UC(σ ) we have SC∑(W , d) ≤ 5 · SC∑(X, d).
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Proof. Fix a profile σ and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal alternative for σ with respect to d, and let W
be an alternative in UC(σ ).

If W weakly defeats X we have SC∑(W , d) ≤ 3 · SC∑(X, d) by Lemma 6. Now, suppose that this is not the case. Since W
is an element of the uncovered set, it follows that there exists an alternative Y such that W weakly defeats Y and Y weakly 
defeats X . Thus, we have |W Y | ≥ n/2 ≥ |Y W | and |Y X | ≥ n/2 ≥ |XY |. We consider the cases where d(X, Y ) ≥ d(X, W ) and 
d(X, Y ) < d(X, W ) separately.

1. d(X, Y ) ≥ d(X, W ). We know that at least n/2 agents prefer Y over X . By Lemma 5 each of these n/2 agents con-
tributes at least 1

2 · d(X, Y ) ≥ 1
2 · d(X, W ) to the social cost of X . This observation is all we need to obtain a distortion 

upper bound of 5. Formally, we have∑
i∈N

d(i, X) ≥
∑

i∈Y X

d(i, X) ≥ 1

2

∑
i∈Y X

d(X, Y ) = 1

2
|Y X | · d(X, Y ) ≥ n

4
· d(X, Y )

≥ n

4
· d(X, W ) ≥ 1

4
|X W | · d(X, W ) ≥ 1

4

∑
i∈X W

min
W �i Z

d(X, Z).

We now apply Lemma 14 with γ = 4 to obtain the desired bound.
2. d(X, Y ) < d(X, W ). In the previous case, we only considered agents in Y X when proving a lower bound on ∑

i∈N d(i, X). In contrast, now we consider the sets W X , X W Y , and Y X W .
The following observations follow from basic set theory and our choice of X , Y , and W :

|W X | + |X W Y | = |Y W X | + |W Y X | + |W XY | + |X W Y |
≥ |W Y | ≥ |Y W | ≥ |Y X W | + |XY W | ≥ 1

2
|Y X W | + 1

2
|XY W |; (12)

|W X | + |Y X W | = |Y W X | + |W Y X | + |W XY | + |Y X W |
≥ |Y X | ≥ n

2
≥ 1

2
(|Y X W | + |XY W | + |X W Y |) . (13)

We will now apply Lemma 13 with

α1 = |W X | + |X W Y |, α2 = |Y X W |, α3 = −|X W Y |,
β1 = 1

2
|Y X W | + 1

2
|XY W |, β2 = 1

2
|X W Y |, β3 = 0

v1 = d(X, W ), v2 = v3 = d(X, Y ).

Note that we have α1 ≥ β1 by (12). Moreover, by (13) we have α1 + α2 + α3 ≥ β1 + β2 + β3; as α3 ≤ 0 and β3 = 0, this 
implies α1 +α2 ≥ β1 +β2. Finally, we have v1 ≥ v2 = v3 by assumption. Thus, the conditions of Lemma 13 are satisfied 
and we obtain

3∑
i=1

αi vi = (|W X | + X W Y ) · d(X, W ) + (|Y X W | − |X W Y |) · d(X, Y )

≥
3∑

i=1

βi vi = 1

2
(|Y X W | + |XY W |) · d(X, W ) + 1

2
|X W Y | · d(X, Y ). (14)

We are now ready to prove a lower bound on the social cost of X . Combining Lemma 5 with (14), we obtain∑
i∈N

d(i, X) ≥
∑

i∈W X

d(i, X) +
∑

i∈X W Y

d(i, X) +
∑

i∈Y X W

d(i, X)

≥ 1

2
|W X | · d(X, W ) + |X W Y |

(
d(X, W ) − d(X, Y )

2

)
+ 1

2
|Y X W | · d(X, Y ) (15)

= 1

2
(|W X | + |X W Y |) · d(X, W ) + 1

2
(|Y X W | − |X W Y |) · d(X, Y )

≥ 1

4
(|Y X W | + |XY W |) · d(X, W ) + 1

4
|X W Y | · d(X, Y ) (16)

≥ 1

4

∑
i∈X W

min
W �i Z

d(X, Z). (17)
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Fig. 1. The distortion of any rule that outputs W is arbitrarily close to 5 as ε → 0 and n → ∞.

Specifically, line (15) follows from Lemma 5, line (16) follows from (14), and line (17) follows because X W = Y X W ∪
XY W ∪ X W Y , W �i W for all i ∈ N and W �i Y for all i ∈ X W Y .
Given this lower bound on 

∑
i∈N d(i, X), we can now apply Lemma 14 with γ = 4, which gives us the desired upper 

bound of 5 on distortion. �
Theorem 15 implies that the distortion of the Copeland rule is upper-bounded by 5; moreover, this bound it tight.

Theorem 16. The distortion of the Copeland rule with respect to the sum objective is at most 5. Moreover, for every ε > 0 there is a 
profile σ such that the distortion of the Copeland rule on σ with respect to the sum objective is at least 5 − ε .

Proof. The upper bound holds by Theorem 15, together with the fact that the Copeland rule outputs a subset of the 
uncovered set. We will now prove that this bound is tight.

Consider a preference profile over three alternatives W , X , Y , where n
2 − 1 agents rank the alternatives as Y � X � W , 

n
2 −1 agents rank the alternatives as X � W � Y , and the remaining two agents rank the alternatives as W � Y � X . Observe 
that W defeats Y , Y defeats X , and X defeats W . Thus, the Copeland score of every alternative is 1 and in particular W
is a Copeland winner. Now let the underlying metric be as shown in Fig. 1. (The distances not shown in the figure can be 
chosen to be consistent with the metric and the preference profile.) We get∑

i∈N d(i, W )∑
i∈N d(i, X)

=
(n

2 − 1
) · (2 − ε) + (n

2 − 1
) · 3 + 20(n

2 − 1
) · (1 + ε) + 22

Thus as n → ∞ and ε → 0, we get instances on which the distortion of the Copeland rule is arbitrarily close to 5. �
The lower bound in Theorem 16 extends to every neutral voting rule that is defined on the majority graph; in the 

terminology of Fishburn [22], such rules are called C1 rules. Note, however, that Ranked Pairs is not a C1 rule. Indeed, while 
we are not able to prove an upper bound of 3 on the distortion of Ranked Pairs in the general case, we can show that its 
distortion does not exceed 3 as long as the weak majority graph does not have long cycles. Recall that the circumference of 
a directed graph is the maximum length of a directed cycle in this graph.

Theorem 17. The distortion of Ranked Pairs with respect to the sum objective is at most 3 as long as the circumference of the weak 
majority graph does not exceed 4.

Proof. As usual, fix a profile σ and a pseudo-metric d ∈ p−1(σ ), let W be an alternative chosen by Ranked Pairs on σ , and 
let X be an optimal alternative for σ with respect to d. If W defeats X , the distortion is at most 3 by Lemma 6; thus, let 
us assume that W does not defeat X , that is, |X W | ≥ n/2 ≥ |W X |. Let G be a graph generated by an execution of Ranked 
Pairs such that W is a source of G . There must be at least one path in G from W to X : otherwise, when considering the 
edge (X, W ), we would have added it to G , a contradiction with W being a source. By the same argument, at least one of 
these paths has the property that the weight of each of its edges is at least |X W | ≥ n/2. Let P be some such path. Then, P
is also a subpath of the weak majority graph, and P together with (X, W ) form a cycle in the weak majority graph. By our 
assumption on the circumference of this graph, this implies that the length of P is at most 3. Assume that P has length 3; 
the argument for the case when P has length 2 is similar and simpler. Then, P consists of alternatives W , Y , Z , X , where 
W defeats Y , Y defeats Z , and Z defeats X . with |W Y |, |Y Z |, |Z X | ≥ |X W |. Throughout this proof, we let ∗W denote the 
set of agents who rank W last out of X , Y , Z , and W ; similarly, ∗W Z denotes the set of agents who rank Z and W below 
X and Y , with W ranked above Z , and ∗W Y denotes the set of agents who rank Y and W below X and Z , with W ranked 
above Y .

We will consider four cases.
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1. d(X, Z) ≥ d(X, W ). Similarly to the first case in the analysis for the uncovered set (Theorem 15), it suffices to consider 
the agents in Z X . Each of these |Z X | ≥ |X W | agents contributes at least d(X,Z)

2 ≥ d(X,W )
2 to the social cost of X , by 

Lemma 5. This is all we need to obtain an upper bound of 3. Formally, we have∑
i∈N

d(i, X) ≥
∑

i∈Z X

d(i, X) ≥ 1

2

∑
i∈Z X

d(X, Z) = 1

2
|Z X | · d(X, Z) ≥ 1

2
|X W | · d(X, Z)

≥ 1

2
|X W | · d(X, W ) ≥ 1

2

∑
i∈X W

min
W �i T

d(X, T ).

We obtain the desired result by applying Lemma 14 with γ = 2.
2. d(X, W ) ≥ d(X, Z) ≥ d(X, Y ). We focus on sets W X and Z X W and make the following observations:

|W X | = n − |X W | ≥ n − |W Y | = |Y W | ≥ | ∗ W |; (18)

|W X | + |Z X W | ≥ |Z X | ≥ |X W | ≥ | ∗ W | + | ∗ W Z | + |X W Y |. (19)

We will now invoke Lemma 13 with α1 = |W X |, α2 = |Z X W |, β1 = | ∗ W |, and β2 = | ∗ W Z | + |X W Y |, v1 = d(X, W ), 
v2 = d(X, Z); note that α1 ≥ β1 by (18) and α1 + α2 ≥ β1 + β2 by (19). Using Lemma 5, the assumption d(X, Z) ≥
d(X, Y ), and the fact that X W ⊆ ∗W ∪ ∗W Z ∪ X W Y , we derive that∑

i∈N

d(i, X) ≥
∑

i∈W X∪Z X W

d(i, X)

≥ 1

2
|W X | · d(X, W ) + 1

2
|Z X W | · d(X, Z)

≥ 1

2
| ∗ W | · d(X, W ) + 1

2
| ∗ W Z | · d(X, Z) + 1

2
|X W Y | · d(X, Y )

≥ 1

2

∑
i∈X W

min
W �i T

d(X, T ).

We can now apply Lemma 14 with γ = 2 to obtain the desired result.
3. d(X, W ) ≥ d(X, Y ) ≥ d(X, Z). This case is similar to the previous one. We will consider the following pairwise disjoint 

sets of agents: W X , Y X W , XY Z ∩ X W , and Z X W ∩ Z XY . We require the following bounds:

|W X | + |Y X W | + |XY Z ∩ X W |
≥ |W X ∩ Y Z | + |Y X W ∩ Y Z | + |XY Z ∩ X W |
= |W X ∩ Y Z | + |X W ∩ Y X ∩ Y Z | + |X W ∩ XY ∩ Y Z |
≥ |Y Z | ≥ |X W | ≥ | ∗ W | + | ∗ W Y |; (20)

|W X | + |Y X W | + |Z X W ∩ Z XY |
≥ |W X ∩ Z X | + |Y X W ∩ Z X | + |Z X W ∩ Z XY |
= |W X ∩ Z X | + |X W ∩ Y X ∩ Z X | + |X W ∩ XY ∩ Z X |
≥ |Z X | ≥ |X W | ≥ | ∗ W | + | ∗ W Y | + |X W Z |. (21)

We can now apply Lemma 13 with

α1 = |W X |, α2 = |Y X W | + |XY Z ∩ X W |, α3 = |Z X W ∩ Z XY | − |XY Z ∩ X W |,
β1 = | ∗ W |, β2 = | ∗ W Y |, β3 = |X W Z |;
v1 = d(X, W ), v2 = d(X, Y ), v3 = d(X, Z).

we have α1 ≥ β1 by (18), α1 + α2 ≥ β1 + β2 by (20), and α1 + α2 + α3 ≥ β1 + β2 + β3 by (21). We obtain∑
i∈N

d(i, X) ≥
∑

i∈W X

d(i, X) +
∑

i∈Y X W

d(i, X) +
∑

i∈Z X W ∩Z XY

d(i, X) +
∑

i∈XY Z∩X W

d(i, X)

≥ 1

2
|W X | · d(X, W ) + 1

2
|Y X W | · d(X, Y ) + 1

2
|Z X W ∩ Z XY | · d(X, Z) (22)

+ 1 |XY Z ∩ X W | · (d(X, Y ) − d(X, Z)) (23)

2
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= 1

2
|W X | · d(X, W )

+ 1

2
(|Y X W | + |XY Z ∩ X W |) · d(X, Y )

+ 1

2
(|Z X W ∩ Z XY | − |XY Z ∩ X W |) · d(X, Z)

≥ 1

2
| ∗ W | · d(X, W ) + 1

2
| ∗ W Y | · d(X, Y ) (24)

+ 1

2
|X W Z | · d(X, Z) (25)

≥ 1

2

∑
i∈X W

min
W �i T

d(X, T ), (26)

where the inequality in line (22) follows from Lemma 5 (inequalities (1) and (2)) and the inequality in line (24) follows 
from Lemma 13. Again, we invoke Lemma 14 with γ = 2 to obtain the desired result.

4. d(X, Y ) ≥ d(X, W ) ≥ d(X, Z). The analysis is very similar to the previous case. We use Lemma 13 with

α1 = |W X | + |Y X W | + |XY Z ∩ X W |, β1 = | ∗ W | + | ∗ W Y |
α2 = |Z X W ∩ Z XY | − |XY Z ∩ X W |, β2 = |X W Z |,
v1 = d(X, W ), v2 = d(X, Z);

we have α1 ≥ β1 by (20) and α1 + α2 ≥ β1 + β2 by (21). Using Lemma 5 and Lemma 13 and the assumption d(X, Y ) ≥
d(X, W ), we obtain∑

i∈N

d(i, X) ≥ 1

2
|W X | · d(X, W )

+ 1

2
(|Y X W | + |XY Z ∩ X W |) · d(X, Y )

+ 1

2
(|Z X W ∩ Z XY | − |XY Z ∩ X W |) · d(X, Z)

≥ 1

2
(|W X | + |Y X W | + |XY Z ∩ X W |) · d(X, W )

+ 1

2
(|Z X W ∩ Z XY | − |XY Z ∩ X W |) · d(X, Z)

≥ 1

2
(| ∗ W | + | ∗ W Y |) · d(X, W ) + 1

2
|X W Z | · d(X, Z)

≥ 1

2

∑
i∈X W

min
W �i T

d(X, T ).

Lemma 14 with γ = 2 gives us the desired result.

This concludes the proof that the distortion of Ranked Pairs with respect to the sum objective is at most 3 when there 
is a “heavy” W –X path of length 3 in the weak majority graph. The case where the length of such path is 2 is similar (and 
simpler), and the case where the length of such path is 1 is simply the case where W defeats X . �

In the conference version of this paper, we conjectured that the distortion of Ranked Pairs is always bounded by 3. 
However, this conjecture was recently disproved by Goel et al. [25], who showed that the distortion of Ranked Pairs can be 
arbitrarily close to 5.

3.3. Distortion of single transferable vote

In this section, we focus on STV and show that it has fairly low distortion. Specifically, we demonstrate that its distortion 
grows at most logarithmically with m; note that this is a much better upper bound than the bounds for the Harmonic rule 
provided by Theorems 9 and 11. However, we also show that STV is not as good as the Copeland rule or other rules that 
choose from the uncovered set, by proving a non-constant lower bound.

Theorem 18. The distortion of STV with respect to the sum objective is asymptotically bounded by O (lnm).
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Fig. 2. The sequence of balls from the proof of Theorem 18.

Proof. Fix a preference profile σ with n voters and m alternatives and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal 
alternative for σ with respect to d, and let W be a winning alternative under STV. We set d = d(X, W ). Pick a value of γ
in the open interval ( 2

3 , 1). Let

x = 2

⌈
log γ

1−γ

(
m · 2γ − 1

3γ − 2

)⌉
+ 1;

note that x is an odd integer and x = O (ln m). Set r = d
2x .

For i = 1, . . . , x + 1, let Bi be a ball with center X and radius (2i − 1)r (see Fig. 2). Note that W ∈ Bx+1 \ Bx . We will 
now argue that B1 contains at most γ n agents.

For the sake of contradiction, assume that this is not the case, i.e., that |B1 ∩ N| > γ n. Fix an elimination sequence that 
results in W being the last surviving alternative. We will say that an alternative Y is supported by an agent j at some stage 
of the STV elimination procedure if Y is the closest not-yet-removed alternative to j. For each i ∈ {1, . . . , x}, let Zi−1 be the 
last alternative from Bi−1 to be removed by STV, and let yi denote the number of alternatives in Bi \Bi−1 just before Zi−1
is removed.

Consider i ≤ x − 2. For every agent j ∈ B1 and every alternative Y /∈ Bi+1 it holds that

d( j, Zi) ≤ d( j, X) + d(X, Zi) ≤ r + (2i − 1)r = (2i + 1)r − r < d(Y , X) − d( j, X) ≤ d( j, Y ).

Hence, just before Zi is removed, each agent in B1 supports an alternative in Bi+1. Thus, from the pigeonhole principle 
we infer that at this moment there exists an alternative Y ∈ Bi+1 that is supported by more than γ n

yi+1+1 agents from B1. 
Consequently, when STV decides to remove Y , all surviving alternatives in Bi+3 \ Bi+2 are supported by more than γ n

yi+1+1

agents. None of these agents is in B1, as all agents in B1 prefer Y to every Y ′ ∈ Bi+3 \Bi+2: indeed, for j ∈ B1 we have

d( j, Y ) ≤ d( j, X) + d(X, Y ) ≤ 2(i + 1)r < d(Y ′, X) − d( j, X) ≤ d( j, Y ′).
Thus, we get

yi+3
γ n

yi+1 + 1
< n(1 − γ ),

and hence yi+1 >
γ

1−γ yi+3 − 1. Set ξ = γ
1−γ ; observe that γ ∈ ( 2

3 , 1) implies ξ > 1 and hence 1
1−ξ

< 0 (this fact will be 
useful in the sequence of inequalities below). Recall that W ∈ Bx+1 \Bx , so yx+1 ≥ 1. We have

y1 > ξ y3 − 1 ≥ ξ2 y5 − ξ − 1 ≥ . . .

≥ ξ
x−1

2 − ξ
x−1

2 −1 − . . . − 1 = ξ
x−1

2 − 1 − ξ
x−1

2

1 − ξ

= ξ
x−1

2

(
1 + 1

1 − ξ

)
− 1

1 − ξ
≥ ξ

x−1
2 · 2 − ξ

1 − ξ

=
(

γ

1 − γ

) x−1
2 · 3γ − 2

2γ − 1
≥ m

2γ − 1

3γ − 2
· 3γ − 2

2γ − 1
= m.

Thus, we obtain y1 > m, a contradiction. We conclude that B1 contains at most γ n agents. Let us now assess the distortion:∑
j∈N d( j, W )∑
j∈N d( j, X)

≤
∑

j∈N (d( j, X) + d(X, W ))∑
j∈N d( j, X)

= 1 + nd∑
j∈N d( j, X)

≤ 1 + nd∑
j∈N\B1

d( j, X)
≤ 1 + nd

n(1 − γ )r
= 1 + 2x

1 − γ
.

Since γ is a constant and x = O (ln m), the distortion is upper-bounded by O (ln m). �
Our next theorem establishes a lower bound of the distortion of STV.
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Fig. 3. The metric space in the proof of Theorem 19 for h = 4. The number in a node denotes the number of agents in that node.

Theorem 19. The maximum distortion of STV with respect to the sum objective over all profiles with m alternatives is �(
√

ln m).

Proof. Given a positive integer h, we construct a perfectly balanced tree of height h and then connect all leaves to one 
additional node (see Fig. 3). We say that all leaves belong to the first layer; for i > 1 layer i consists of parents of the nodes 
at level i − 1. For i = 2, . . . , h, each node at level i has yi children, where yi = 2i + 2i−2 − 2. We denote by zi the number 
of nodes at level i.

We define the length of each edge of our graph to be one, and define the distance between a pair of nodes to be the 
length of a shortest path between these nodes.

We place one alternative in each node, including the node that is connected to all leaves. As we have yi = 2i + 2i−2 − 2
for 2 ≤ i ≤ h, and hence yi ≤ 2i+1 for i ∈ [h], the total number of leaves can be upper-bounded as

z1 ≤ 2h+1 · 2h · . . . · 2 = 2
(h+1)(h+2)

2 ≤ 2(h+1)2;
as the degree of each internal node is at least 2, this implies that the number of alternatives m is at most 2 · 2(h+1)2

. From 
this, we conclude that h ≥ √

log2 m − 2.
The agents’ positions are defined as follows. We place one agent in each leaf node. Let Si denote the total number of 

agents in a subtree rooted in a level-i node; we have S1 = 1. Now, for each i = 2, . . . , h, we compute Si−1 and place Si−1
agents in each node of layer i. Thus, we have Si = Si−1(yi + 1). Note that there are exactly z1 agents in the bottom layer.

There are zi Si−1 agents at level i, and we have zi = zi+1 yi+1. Thus,

zi+1 Si

zi Si−1
= Si

yi+1 Si−1
= yi + 1

yi+1
= 2i + 2i−2 − 1

2i+1 + 2i−1 − 2
= 1

2
,

i.e., layer i contains twice as many agents as layer i + 1. As layer 1 has z1 agents, the number of agents in layer i is equal 
to z12−(i−1) .

Let Y0 be the alternative located in the node connected to all the leaves. STV would first remove Y0, as no agent ranks 
it first, and every other alternative is ranked first by at least one agent. STV can then remove all alternatives located in 
the leaves, one by one: initially, each such alternative is ranked first by exactly one agent, and no leaf alternative gains 
additional votes as other leaf alternatives are removed. Inductively, suppose that STV has removed all alternatives in layers 
1, . . . , i − 1, and all other alternatives are still present. Then an alternative in layer i is ranked first among the remaining 
alternatives by the Si agents in the respective subtree, and each alternative in layer j, j > i, is ranked first by the S j−1 ≥ Si

agents who are located in the same node as that alternative. Thus, STV can remove the alternatives in layer i one by one. 
We conclude that the root of the tree can be selected as the winner. As there is an agent in each leaf, the total distance of 
the agents to the root, which we will denote by dstv, is at least z1h.

In contrast, the total distance of the agents to the alternative in the node connecting all the leaves can be upper-bounded 
as

dbot = z1 + z1

2
2 + . . . + z1

2h−1
h = z1

h∑
i=1

i2−(i−1)

= 4z1(1 − (h + 1)2−h + h2−h−1) ≤ 4z1.

Thus, we can lower-bound the distortion in our example as

dstv

dbot
≥ h

4
≥

√
log2 m − 2

4
.

This completes the proof. �
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3.4. Improving the worst-case distortion: (m − 1)-simplex

We showed that for the general metric setting, among all voting rules that we have considered, the Copeland rule has 
the lowest worst-case distortion. However, the worst-case distortion of the Copeland rule can be arbitrarily close to 5, so 
there is still a gap between the performance of this rule and our lower bound of 3 (Theorem 4). In this section we consider 
an interesting special setting for which this gap disappears, and Plurality, STV, and Ranked Pairs all have best-possible 
worst-case distortion.

Specifically, instead of considering arbitrary metric spaces, we now assume that the m alternatives are the vertices of 
the (m − 1)-simplex endowed with the Euclidean metric (i.e., it holds that d(X, Y ) = d(X, Z) for all alternatives X, Y , Z
such that Y , Z �= X), and that the agents are located inside this simplex. This choice of metric may be appropriate for 
scenarios where the alternative space does not have any obvious structure, so it is natural to associate the alternatives 
with pairwise orthogonal directions. We note that Theorem 4 remains true for the simplex, so the worst-case distortion of 
every deterministic voting rule with respect to the sum objective is at least 3 even in this case. However, the constructions 
establishing some of the stronger lower bounds for specific voting rules cannot be embedded into the simplex and, indeed, 
the worst-case distortion of several voting rules improves considerably. Intuitively, there are two reasons for our positive 
results in this setting: first, all pairwise distances between distinct alternatives are equal, and second, an agent cannot be 
too close to an alternative that is not her top choice.

We start by showing that Plurality has best possible distortion in the (m −1)-simplex setting, i.e., its worst-case distortion 
with respect to the sum objective matches the lower bound of 3.

Theorem 20. In the (m − 1)-simplex setting, the distortion of Plurality with respect to the sum objective is at most 3.

Proof. Fix an n-voter profile σ over a set of alternatives A, |A| = m. Let d ∈ p−1(σ ) be a Euclidean metric that associates 
each alternative in A with a vertex of an (m − 1)-simplex. Let X be an optimal alternative for σ with respect to d, and let 
W be a Plurality winner. For each alternative Z ∈ A, let N Z be the set of all agents that rank Z first; note that we have 
|NW | ≥ |N X | by definition of the Plurality rule and |W X | ≥ |NW |.

We will first derive a strong lower bound on the cost of X in the (m − 1)-simplex setting. Consider an agent i ∈ N Z for 
some Z �= X . By Lemma 5 we have d(i, X) ≥ d(X,Z)

2 = d(X,W )
2 . Thus, we obtain 

∑
i∈N d(i, X) ≥ d(X,W )

2 (n − |N X |). Using this 
lower bound, we can build on inequality (4) in Lemma 6 and upper-bound the distortion of Plurality on σ as

1 + 2(n − |W X |)d(X, W )

d(X, W )(n − |N X |) = 1 + 2(n − |W X |)
n − |N X | ≤ 1 + 2(n − |W X |)

n − |NW | ≤ 1 + 2(n − |W X |)
n − |W X | = 3. � (27)

Ranked Pairs and STV also achieve the best possible distortion with respect to the sum objective in the (m − 1)-simplex 
setting.

Theorem 21. In the (m − 1)-simplex setting, the distortion of Ranked Pairs with respect to the sum objective is at most 3.

Proof. Fix an n-voter profile σ over a set of alternatives A, |A| = m. Let d ∈ p−1(σ ) be a Euclidean metric that associates 
each alternative in A with a vertex of an (m − 1)-simplex. Let X be an optimal alternative for σ with respect to d, and let 
W be a Ranked Pairs winner. In our analysis of Ranked Pairs (Theorem 17) we have established that one of the following 
statements holds: (i) W = X , in which case our claim is trivially true, (ii) W weakly defeats X , in which case we are done 
by Lemma 6, or (iii) there is another alternative Z that weakly defeats X . In case (iii), in the (m − 1)-simplex setting we 
have d(X, Z) = d(X, W ), and we have argued in the proof of Theorem 17 that in this case the distortion of Ranked Pairs 
with respect to the sum objective does not exceed 3. �
Theorem 22. In the (m − 1)-simplex setting, the distortion of STV with respect to the sum objective is at most 3.

Proof. Fix a profile σ over a set of alternatives A, |A| = m. Let d ∈ p−1(σ ) be a Euclidean metric that associates each 
alternative in A with a vertex of an (m − 1)-simplex. Let X be an optimal alternative for σ with respect to d, and let W
be an STV winner. Consider an execution of STV that results in W being elected, and let t be the round in which X is 
eliminated. For each alternative Z ∈ A, let N Z denote the set of agents who rank Z as their most preferred alternative in 
the beginning of round t , i.e., just before X is eliminated. Clearly, |N X | ≤ |NW |.

Consider an alternative Y ∈ A \ {X, W }. We have NY ⊆ Y X , so by Lemma 5 for each agent i ∈ NY we have 2d(i, X) ≥
d(Y , X) and hence

d(i, W ) ≤ d(i, Y ) + d(Y , W ) ≤ d(i, X) + d(Y , W ) = d(i, X) + d(Y , X) ≤ 3d(i, X).

Consequently, we obtain
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∑
i /∈NW ∪N X

d(i, W ) ≤ 3
∑

i /∈NW ∪N X

d(i, X). (28)

Next, let us consider agents from N X ∪ NW :∑
i∈NW ∪N X

d(i, W ) ≤
∑

i∈NW ∪N X

d(i, X) + |N X |d(X, W )

≤
∑

i∈NW ∪N X

d(i, X) + |NW |d(X, W ) ≤
∑

i∈NW ∪N X

d(i, X) +
∑

i∈NW

(d(i, X) + d(i, W ))

≤
∑

i∈NW ∪N X

d(i, X) + 2
∑

i∈NW

d(i, X) ≤ 3
∑

i∈NW ∪N X

d(i, X). (29)

Combining inequalities (28) and (29), we obtain the desired bound. �
On the other hand, for Borda, Veto, k-Approval with k > 1, and the Copeland rule, the worst-case distortion with respect 

to the sum objective remains unchanged in the (m − 1)-simplex setting; the constructions establishing the lower bounds 
for these rules in the general metric setting can be adjusted to work in the (m − 1)-simplex setting. The question for other 
scoring rules, including the Harmonic rule, remains open.

4. Distortion of median agent cost

In this section we study the distortion of deterministic voting rules as measured by the median agent cost. As a short-
hand, when the pseudo-metric d is fixed, we denote the median social cost of an alternative Y by med(Y ). Recall that we 
define med(Y ) as the � n

2 + 1�-th smallest cost, i.e., if n = 8, four agents are located at distance 1 from Y and four agents 
are located at distance 3 from Y then med(Y ) = 3.

The following simple lemma, which follows from the triangle inequality, will be useful in our analysis.

Lemma 23. For every pair of alternatives Y and Z we have med(Z) ≤ med(Y ) + d(Y , Z).

Proof. There are at least � n
2 +1� agents i with d(i, Y ) ≤ med(Y ). For every such agent i we have d(i, Z) ≤ d(i, Y ) +d(Y , Z) ≤

med(Y ) + d(Y , Z). Hence the claim follows. �
For profiles that admit weak Condorcet winners, we obtain the same result as for the sum objective (Corollary 7): by 

selecting a weak Condorcet winner, we ensure that the distortion does not exceed 3.

Theorem 24. Consider an n-voter profile σ and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal alternative for σ with respect to d. 
If W weakly defeats X then SCmed(W , d) ≤ 3 · SCmed(X, d).

Proof. We split the analysis into two cases: med(W ) > 3
2 · d(X, W ) and med(W ) ≤ 3

2 · d(X, W ).

1. med(W ) = β ·d(X, W ), β > 3
2 . By Lemma 23, we have

med(W )

med(X)
≤ med(W )

med(W ) − d(W , X)
= β · d(X, W )

(β − 1) · d(X, W )
= 1 + 1

β − 1
.

As we assume β > 3
2 , the desired bound follows.

2. med(W ) ≤ 3
2 ·d(X, W ). For each agent i in W X we have d(i, X) ≥ 1

2 · d(W , X) (Lemma 5). As |W X | ≥ n/2, it follows 
that med(X) ≥ 1

2 · d(X, W ). This immediately implies the desired bound. �
For |A| = 2 Theorem 24 implies that the distortion of the weak majority rule with respect to the median objective does 

not exceed 3. However, this result does not extend to the case |A| ≥ 3; indeed, in this case we obtain a lower bound of 5 
that applies to all deterministic voting rules.

Theorem 25. For m > 2 no deterministic voting rule has worst-case distortion less than 5 with respect to the median objective.

Proof. Let A = {X, Y , W }. Suppose that there are n/3 agents corresponding to each of the preference rankings W � Y � X , 
Y � X � W and X � W � Y . Without loss of generality, suppose that the given voting rule picks W as a winner. Consider 
an underlying metric as shown in Fig. 4. (The distances not shown in the figure can be chosen to be consistent with the 
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Fig. 4. If we pick W as a winning alternative, the worst-case distortion with respect to the median objective approaches 5 as ε → 0.

metric and the preference profile). In this instance, we have med(W ) = 5 + ε and med(X) = 1 + ε . Thus, the distortion 
approaches 5 as ε → 0. �

For the median objective the performance of positional scoring rules is even worse than for the sum objective: we will 
now show that for m > 2 every positional scoring rule has unbounded distortion.

Theorem 26. For m > 2 the worst-case distortion of every positional scoring rule with respect to the median objective is unbounded.

Proof. Fix the number of alternatives m > 2 and the scoring vector 
s = (s1, . . . , sm) with s1 > sm; we can assume without 
loss of generality that sm = 0. All of our constructions associate agents and alternatives with points in R and use the 
standard Euclidean metric. Let ε be a small positive value.

Suppose first s2 = 0, i.e., our rule is equivalent to Plurality. We construct an n-voter profile over the set of alternatives 
A, |A| = m, where n ≥ 6 and n is divisible by 3. We place n/3 − 1 agents and alternative Y at x = −ε , n/3 agents and 
alternative X at x = 0, and n/3 + 1 agents and alternative W at x = 1. All the remaining alternatives are located between 
x = 1 + ε and x = 1 + 2ε . We have med(X) = ε , med(W ) = 1. Since Plurality chooses W and ε can be arbitrarily small, this 
proves our claim.

Now, suppose that s2 > 0. We construct an n-voter profile over the set of alternatives A, |A| = m, where n is divisible 
by 2 and n > 4s1

s2
. We place n/2 + 1 agents and alternative X at x = 0, n/2 − 1 agents and alternative W at x = 1, and all 

the remaining alternatives between x = 1 + ε and x = 1 + 2ε . Then the score of X is (n/2 + 1) · s1, whereas the score of W
is (n/2 + 1) · s2 + (n/2 − 1) · s1 = (n/2 + 1) · s1 + (n/2 + 1) · s2 − 2s1. If n > 4s1

s2
, the score of W is higher than that of X , 

so an alternative Y ∈ A \ {X} will be a winner, with med(Y ) ≥ 1. On the other hand, med(X) = 0, which proves that the 
distortion is unbounded. �

We will now show that every voting rule that outputs a subset of the uncovered set (and hence, in particular, the 
Copeland rule) achieves the best possible distortion with respect to the median objective.

Theorem 27. Consider a voting rule f such that for every profile σ it holds that f (σ ) ⊆ UC(σ ). The distortion of f with respect to the 
median objective does not exceed 5.

Proof. Fix a profile σ , an alternative W ∈ UC(σ ) and a pseudo-metric d ∈ p−1(σ ). Let X be an optimal alternative with 
respect to d. If W weakly defeats X , then by Theorem 24 we have med(W )/med(X) ≤ 3. Thus, assume that X defeats W . 
As W ∈ UC(σ ), there exist an alternative Y such that W weakly defeats Y and Y weakly defeats X . We split the analysis 
into two cases: med(W ) > 5

4 · d(X, W ) and med(W ) ≤ 5
4 · d(X, W ).

1. med(W ) = β ·d(X, W ), β > 5
4 . By Lemma 23, med(X) ≥ med(W ) − d(X, W ) = (β − 1) · d(X, W ). Hence the distortion 

in this case is at most β
β−1 ≤ 5.

2. med(W ) ≤ 5
4 ·d(X, W ). At least half of the agents prefer Y to X and by Lemma 5 for each i ∈ Y X we have d(i, X) ≥

1
2 · d(X, Y ). Similarly, at least half of the agents prefer W to Y , and by Lemma 5 for each i ∈ W Y we have d(i, X) ≥
1
2 · (d(X, W ) − d(X, Y )). Thus,

med(X) ≥ 1

2
· max {d(X, Y ),d(X, W ) − d(X, Y )} , and hence

med(W )

med(X)
≤

5
4 · d(X, W )

1
2 · max {d(X, Y ),d(X, W ) − d(X, Y )} .

The above term achieves its maximum value when d(X, W ) = 2 · d(X, Y ), thus giving us the desired bound. �
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Fig. 5. For a voting rule that chooses W the distortion with respect to α-PC approaches 3 as ε → 0, for all α ≥ 1
2 .

Finally, we note that the construction in the proof of Theorem 19 also gives a lower bound of �(
√

ln m) for the dis-
tortion of STV with respect to the median objective. However, it is not clear if the upper bound on the distortion of STV 
(Theorem 18) can be adapted to the median objective; we leave this question for future work.

4.1. Generalizing the median: percentile distortion

While in many applications it is natural to consider the cost of the median agent, sometimes we may also be interested 
in other order statistics, such as, e.g., the satisfaction of the agents in the 25-th or 75-th percentile. We can generalize the 
median objective function med(Y ) by using percentiles, as follows. Sort the set {d(i, Y ) : i ∈ N} in non-decreasing order; for 
each α ∈ [0, 1) we let α-PC(Y ) be the �α · |{d(i, Y ) : i ∈ N}| + 1�-th element in this order. Thus α-PC(Y ) with α = 1/2 is 
equal to med(Y ). The definition of distortion with respect to the α-PC objective is similar to the definitions in Section 2: 
we consider the ratio of α-PC(W ) and α-PC(X), where W is a winning alternative and X is an optimal alternative.

Theorem 28 provides lower bounds on distortion of all deterministic voting rules with respect to the α-PC objective, for 
all values of α. Then in Theorems 30 and 31 we identify voting rules that achieve these bounds for some ranges of values 
of α.

Theorem 28. The worst-case distortion of every deterministic voting rule with respect to α-PC is

• at least 3 for α ∈ [ 2
3 , 1);

• at least 5 for α ∈ [ 1
2 , 23 );

• unbounded for α ∈ [0, 12 ).

Proof.

1. α ∈ [ 2
3 ,1). The construction in Fig. 5 shows that for every deterministic voting rule its distortion with respect to α-PC

can be arbitrarily close to 3 for all α ∈ [ 1
2 , 1), so in particular for all α ∈ [ 2

3 , 1). Specifically, we pick a small ε > 0, place 
alternatives X and W at x = 0 and x = −2, respectively, and place n/2 agents at x = 1 +ε and n/2 agents at x = −1 −ε . 
Then half of the agents prefer W to X and half of the agents prefer X to W , so without loss of generality we can assume 
that the given voting rule picks W as a winner. For α ≥ 1

2 , we have α-PC(X) = 1 + ε and α-PC(W ) = 3 + ε , making 
distortion arbitrarily close to 3 as ε → 0.

2. α ∈ [ 1
2 , 2

3 ). The argument in Theorem 25 extends to all values of α in [ 1
2 , 23 ).

3. α ∈ [0, 1
2 ). We can use the construction in the proof of Theorem 4: we have α-PC(X) = 0, α-PC(W ) = 1 − ε for all α in 

[0, 12 ). �
We now give upper bounds of the distortion of Plurality and the Copeland rule to show they are optimal for certain 

ranges of values of α. The following simple lemma, which is a generalization of Lemma 23, with be used in our proofs.

Lemma 29. For every pair of alternatives Y and Z and every α ∈ [0, 1) we have α-PC(Z) ≤ α-PC(Y ) + d(Y , Z).

Proof. For each agent i with d(i, Y ) ≤ α-PC(Y ) we have d(i, Z) ≤ d(i, Y ) + d(Y , Z) ≤ α-PC(Y ) + d(Y , Z). Hence the result 
follows. �
Theorem 30. The distortion of Plurality with respect to the α-PC objective with α ≥ m−1

m is at most 3.

Proof. This proof is similar to that of Theorem 24. Fix α ∈ [m−1
m , 1), an n-voter profile σ over m alternatives and a pseudo-

metric d ∈ p−1(σ ). Let W be a Plurality winner and let X be an optimal alternative with respect to d. We consider two 
cases: α-PC(W ) > 3 · d(X, W ) and α-PC(W ) ≤ 3 · d(X, W ).
2 2
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Fig. 6. For the Copeland rule for a given α ∈ [ 1
2 , 1), we can choose a value of k > 1 so that α-PC(W ) = 5 + ε and α-PC(X) = 1 − ε . Thus the distortion with 

respect to the α-PC objective approaches 5 as ε → 0.

1. α-PC(W ) = β ·d(X, W ), β ≥ 3
2 . By Lemma 29, we obtain

α-PC(W )

α-PC(X)
≤ α-PC(W )

α-PC(W ) − d(X, W )
= β · d(X, W )

(β − 1) · d(X, W )
= β

β − 1
.

As we assume β ≥ 3/2, the desired bound follows.
2. α-PC(W ) ≤ 3

2 ·d(X, W ). Since W is a Plurality winner, at least n
m agents rank W first. Each such agent prefers W

to X , and for each agent i ∈ W X by Lemma 5 we have d(i, X) ≥ 1
2 · d(W , X). As α ≥ m−1

m , it follows that α-PC(X) ≥
1
2 · d(X, W ). As α-PC(W ) ≤ 3

2 · d(X, W ), the desired distortion bound is immediate. �
Theorem 31. The distortion of the Copeland rule with respect to the α-PC objective with α ∈ [ 1

2 , 1) is at most 5, and this bound is 
tight.

Proof. For the upper bound, we use the fact that the Copeland rule outputs a subset of the uncovered set. We then observe 
that the proof of Theorem 27 works verbatim, with median replaced by α-PC. To prove that this bound is tight, let k =
� 1

1−α � and consider a profile over {X, Y , W } where two agents rank the alternatives as W � Y � X , k + 2 agents rank the 
alternatives as Y � X � W and k + 1 agents rank the alternatives as X � W � Y . Then W defeats Y , Y defeats X , and X
defeats W , so W is a winner under the Copeland rule. Now let the underlying metric be as shown in Fig. 6, where all voters 
that do not rank X last are located at distance 1 − ε from X . (The distances not shown in the figure can be chosen to be 
consistent with the metric and the preference profile.)

Now, consider α-PC(W ). Since α ≥ 1
2 , we know that k+1

2k+5 < α, and so less than α fraction of the agents are within 
distance 3 + ε of W . On the other hand, 2k+3

2k+5 = 1 − 2
2k+5 ≥ 1 − 1

k ≥ α, so at least α fraction of the agents are within 
distance 5 + ε of W and hence α-PC(W ) = 5 + ε . Similarly, α-PC(X) = 1 − ε . Thus, the distortion with respect to the α-PC
objective approaches 5 as ε → 0. �

Together with the lower bound from Theorem 28, Theorems 30 and 31 show that, for distortion with respect to the α-PC
objective, Plurality is optimal for m−1

m ≤ α ≤ 1, whereas the Copeland rule is optimal for 1
2 ≤ α < 2

3 .

5. Conclusion and future directions

We analyzed the distortion of many common voting rules in the setting where the agent costs form a metric space. 
We showed that despite the process of winner determination having absolutely no extra information about the underly-
ing metric space except the induced ordinal agent preferences, rules that select from the uncovered set achieve a small 
constant-factor approximation to the optimal alternative (and in fact, for median objective function they achieve the best 
approximation to an optimal alternative that a deterministic voting rule can ever hope to achieve); this class of rules in-
cludes the well-known Copeland rule. We have also established that all positional scoring rules have distortion that grows 
with the number of alternatives, with popular rules in this family having distortion that is linear or almost linear in the 
number of alternatives, and that STV exhibits acceptable performance with respect to distortion.

Nevertheless, some important open questions remain. Foremost among them is whether there exists a voting rule that 
beats Copeland, and maybe achieves the best possible distortion of 3. In the conference version of this paper, we con-
jectured that this may be the case for Ranked Pairs; however, this conjecture was recently disproved by Goel et al. [25]. 
Further, while there are some promising results on the distortion of randomized voting rules [1,20,26], our understanding 
of the randomized setting is far from complete. It particular, it would be interesting to see if, by adding a small amount 
of randomization to Copeland and Ranked Pairs, we can improve their distortion properties. Finally, we observe that for 
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the median objective function many of the entries in Table 1 are ∞. A natural research direction is to develop a more 
fine-grained approach that would enable us to compare different voting rules in this model.

Acknowledgements

This work began as a project in a class taught by Lirong Xia, and we would like to thank him for many interesting 
discussions on the topic of social choice. This work was partially supported by NSF awards CCF-1101495, CNS-1218374, by 
an ERC Starting Grant ACCORD (639945), and by the Foundation for Polish Science within the Homing programme (Project 
title: “Normative Comparison of Multiwinner Election Rules”).

References

[1] E. Anshelevich, J. Postl, Randomized social choice functions under metric preferences, J. Artif. Intell. Res. 58 (2017) 797–827.
[2] K.J. Arrow, Social Choice and Individual Values, 2nd edition, Wiley, New York, 1963.
[3] D. Black, On the rationale of group decision-making, Eur. J. Polit. Econ. (1948) 23–34.
[4] A. Bogomolnaia, J.-F. Laslier, Euclidean preferences, J. Math. Econ. 43 (2) (2007) 87–98.
[5] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press, 1998.
[6] C. Boutilier, I. Caragiannis, S. Haber, T. Lu, A.D. Procaccia, O. Sheffet, Optimal social choice functions: a utilitarian view, Artif. Intell. 227 (2015) 190–213.
[7] S. Branzei, I. Caragiannis, J. Morgenstern, A. Procaccia, How bad is selfish voting? in: Proceedings of the 27th AAAI Conference on Artificial Intelligence, 

2013, pp. 138–144.
[8] D. Campbell, S. Nitzan, Social compromise and social metrics, Soc. Choice Welf. 3 (1) (1986) 1–16.
[9] I. Caragiannis, A.D. Procaccia, Voting almost maximizes social welfare despite limited communication, Artif. Intell. 175 (9) (2011) 1655–1671.

[10] D. Chakrabarty, C. Swamy, Welfare maximization and truthfulness in mechanism design with ordinal preferences, in: Proceedings of the 5th Conference 
on Innovations in Theoretical Computer Science, 2014, pp. 105–120.

[11] J.-A.-N. de Caritat, Marquis de Condorcet. Essai sur l’Application de L’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix, 1785. 
Facsimile reprint of original published in Paris, 1972, by the Imprimerie Royale.

[12] V. Conitzer, T. Sandholm, Common voting rules as maximum likelihood estimators, in: Proceedings of the 21st Conference in Uncertainty in Artificial 
Intelligence, 2005, pp. 145–152.

[13] V. Conitzer, M. Rognlie, L. Xia, Preference functions that score rankings and maximum likelihood estimation, in: Proceedings of the 21st International 
Joint Conference on Artificial Intelligence, 2009, pp. 109–115.

[14] O.A. Davis, M.J. Hinich, A mathematical model of preference formation in a democratic society, in: J.L. Bernd (Ed.), Mathematical Applications in 
Political Science II, Southern Methodist University Press, 1966, pp. 175–208.

[15] E. Elkind, A. Slinko, Rationalizations of voting rules, in: F. Brandt, V. Conitzer, U. Endriss, J. Lang, A.D. Procaccia (Eds.), Handbook of Computational 
Social Choice, Cambridge University Press, 2016.

[16] E. Elkind, P. Faliszewski, A. Slinko, Distance rationalization of voting rules, Soc. Choice Welf. 45 (2) (2015) 345–377.
[17] E. Elkind, P. Faliszewski, J.F. Laslier, P. Skowron, A. Slinko, N. Talmon, What do multiwinner voting rules do? An experiment over the two-dimensional 

euclidean domain, in: Proceedings of the 31st Conference on Artificial Intelligence, 2017, pp. 494–501.
[18] J.M. Enelow, M.J. Hinich, The Spatial Theory of Voting: An Introduction, CUP Archive, 1984.
[19] J.M. Enelow, M.J. Hinich, Advances in the Spatial Theory of Voting, Cambridge University Press, 1990.
[20] M. Feldman, A. Fiat, I. Golomb, On voting and facility location, in: Proceedings of the 17th ACM Conference on Economics and Computation, 2016, 

pp. 269–286.
[21] A. Filos-Ratsikas, P.B. Miltersen, Truthful approximations to range voting, in: Proceedings of the 10th International Conference on Web and Internet 

Economics, 2013, pp. 175–188.
[22] P.C. Fishburn, Condorcet social choice functions, SIAM J. Appl. Math. 33 (3) (1977) 469–489.
[23] J.S. Gans, M. Smart, Majority voting with single-crossing preferences, J. Public Econ. 59 (2) (1996) 219–237.
[24] A. Gibbard, Manipulation of voting schemes, Econometrica 41 (4) (1973) 587–601.
[25] A. Goel, A.K. Krishnaswamy, K. Munagala, Metric distortion of social choice rules: lower bounds and fairness properties, in: Proceedings of the 18th 

ACM Conference on Economics and Computation, 2017, pp. 287–304.
[26] S. Gross, E. Anshelevich, L. Xia, Vote until two of you agree: mechanisms with small distortion and sample complexity, in: Proceedings of the 31st 

Conference on Artificial Intelligence, 2017.
[27] J.C. Harsanyi, Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility, Springer, 1976.
[28] G. Laffond, J.-F. Laslier, M. Le Breton, Condorcet choice correspondences: a set-theoretical comparison, Math. Soc. Sci. 30 (1) (1995) 23–35.
[29] K.O. May, A set of independent necessary and sufficient conditions for simple majority decision, Econometrica 20 (4) (1952) 680–684.
[30] R.D. McKelvey, P.C. Ordeshook, A decade of experimental research on spatial models of elections and committees, in: J.M. Enelow, M.J. Hinich (Eds.), 

Advances in the Spatial Theory of Voting, Cambridge University Press, 1990, pp. 99–144.
[31] S. Merrill, B. Grofman, A Unified Theory of Voting: Directional and Proximity Spatial Models, Cambridge University Press, 1999.
[32] H. Moulin, Choosing from a tournament, Soc. Choice Welf. 3 (4) (1986) 271–291.
[33] Y.-K. Ng, A case for happiness, cardinalism, and interpersonal comparability, Econ. J. 107 (445) (1997) 1848–1858.
[34] J. Oren, B. Lucier, Online (budgeted) social choice, in: Proceedings of 28th AAAI Conference on Artificial Intelligence, 2014, pp. 1456–1462.
[35] C.R. Plott, A notion of equilibrium and its possibility under majority rule, Am. Econ. Rev. 57 (4) (1967) 787–806.
[36] A.D. Procaccia, J.S. Rosenschein, The distortion of cardinal preferences in voting, in: Proceedings of 10th International Workshop on Cooperative Infor-

mation Agents, Springer, 2006, pp. 317–331.
[37] J.E. Roemer, Theories of Distributive Justice, Harvard University Press, 1998.
[38] A. Saporiti, Strategy-proofness and single-crossing, Theor. Econ. 4 (2) (2009) 127–163.
[39] M. Satterthwaite, Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare func-

tions, J. Econ. Theory 10 (2) (1975) 187–217.
[40] N. Schofield, The Spatial Model of Politics, Routledge, 2007.
[41] H.P. Young, Social choice scoring functions, SIAM J. Appl. Math. 28 (4) (1975) 824–838.
[42] H.P. Young, Condorcet’s theory of voting, Am. Polit. Sci. Rev. 82 (4) (1988) 1231–1244.
[43] W.S. Zwicker, Introduction to the theory of voting, in: F. Brandt, V. Conitzer, U. Endriss, J. Lang, A.D. Procaccia (Eds.), Handbook of Computational Social 

Choice, Cambridge University Press, 2015, chapter 2.

http://refhub.elsevier.com/S0004-3702(18)30456-9/bib41503136s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6172726F7731393633s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib626C61636B31393438726174696F6E616C65s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib626F672D6C61733A6A3A6575636C696465616Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib626F726F64696E313939386F6E6C696E65s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib626F7574696C696572323031326F7074696D616Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6272616E7A656932303133626164s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6272616E7A656932303133626164s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib63616D2D6E69743A6A3A6472s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib636172616769616E6E697332303131766F74696E67s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6368616B726162617274793230313477656C66617265s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6368616B726162617274793230313477656C66617265s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib636F6E2D73616E3A633A6D6C65s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib636F6E2D73616E3A633A6D6C65s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib4352583039s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib4352583039s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib446176697348696E6963683636s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib446176697348696E6963683636s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib656C6B2D736C693A733A6D6C656472s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib656C6B2D736C693A733A6D6C656472s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6566732D6472s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib32644D756C746977696E6E6572s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib32644D756C746977696E6E6572s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib656E656C6F77313938347370617469616Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib656E656C6F7731393930616476616E636573s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib464647s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib464647s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib66696C6F7332303133747275746866756Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib66696C6F7332303133747275746866756Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6669733A6A3A636F6E646F72636574s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib67616E73313939366D616A6F72697479s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6769623A6A3A706F6C7363693A6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib474B4D3136s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib474B4D3136s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib4741583137s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib4741583137s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib68617273616E79693139373663617264696E616Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6C6166666F6E6431393935636F6E646F72636574s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6D61794178696F6D6174696331393532s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6D636B656C76657931393930s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6D636B656C76657931393930s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6D657272696C6C31393939756E6966696564s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6D6F756C696E3139383663686F6F73696E67s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6E673139393763617365s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib6F72656E323031346F6E6C696E65s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib506C6F747431393637s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib70726F63616363696132303036646973746F7274696F6Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib70726F63616363696132303036646973746F7274696F6Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib726F656D6572313939387468656F72696573s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7361706F72697469323030397374726174656779s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7361743A6A3A706F6C7363693A6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7361743A6A3A706F6C7363693A6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7363686F6669656C64323030377370617469616Cs1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib796F753A6A3A73636F72696E67s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib796F753A6A3A636F6E646F72636574s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7A7769636B6572s1
http://refhub.elsevier.com/S0004-3702(18)30456-9/bib7A7769636B6572s1

	Approximating optimal social choice under metric preferences
	1 Introduction
	Our contributions
	Related work

	2 Preliminaries
	Social choice with ordinal preferences
	Cardinal metric costs
	Social cost and distortion

	3 Distortion of total agent cost
	3.1 Distortion of scoring rules
	3.2 Distortion of the Copeland rule and Ranked Pairs
	3.3 Distortion of single transferable vote
	3.4 Improving the worst-case distortion:  (m-1)-simplex

	4 Distortion of median agent cost
	4.1 Generalizing the median: percentile distortion

	5 Conclusion and future directions
	Acknowledgements
	References


